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ABSTRACT

A control problem is discussed for unmanned aerial 

vehicle (UAV) as applies to its short-period longitudinal 

motion. The problem is formulated taking into account 

various uncertainty factors such as imperfect knowledge 

about UAV parameters and characteristics as well as 

environment exposure. One more class of the 

uncertainty factors includes failures of UAV systems and 

its structural damages. A preliminary step is needed to 

synthesize adaptive damage-tolerant control systems. 

This step consists in plant identification using artificial 

neural network (ANN) techniques. Next step is a 

synthesis of appropriate neural controller. An adaptive 

control scheme based on inverse dynamics problem 

(IDP) approach is used to achieve control goals for the 

conditions mentioned above. The scheme is implemented 

basing on ANN tools. Simulation is carried out to 

confirm efficiency of the adaptive damage-tolerant 

neural control. Appropriate computer experiment 

results are presented and discussed to demonstrate 

features of the proposed approach. 

1 INTRODUCTION

We need to provide a motion control for modern and 

advanced UAVs under such conditions as considerable 

various uncertainties in values of their parameters and 

characteristics, flight regimes and environment exposure. 

Besides numerous failure conditions can emerge during 

UAV flight including equipment failures and structure 

damages. These conditions should be counteracted by 

means of reconfiguration for control system and control 

surfaces of the UAV. 

Therefore the UAV faces each time circumstances that 

can vary considerably and unpredictably. The UAV control 

system must be able to conform efficiently to these 

variations by means of on-line changes in parameters and/or 

structure of control laws used to manage UAV behavior.  A 

way based on theory of adaptive control allows us to satisfy 

these requirements [1]–[9]. 

An approach basing on neural network simulation and 

control is one of the most effective tools to implement 

adaptive systems [7], [8]. An important part of the 

implementation process for the proposed approach is 

generation of artificial neural network based model (ANN-

model) for the UAV which is interpreted as a plant. An 

example of ANN-model generation is presented in 

subsequent sections as applies to simulation of longitudinal 

short-period motion for a mini-UAV. 

2 GENERAL ADAPTIVE CONTROL SCHEME BASED ON 

INVERSE DYNAMICS APPROACH

There are problems which consist in generation of control 

laws providing realization some prescribed motion for a 

plant [10], [11]. We designate these problems as inverse 

dynamics problems (IDP). As applies to the IDP problem 

we need to implement a motion of the dynamic system 

which fits to some desired or reference motion 
 

(1) ( ), ( ), 0m mx t x t t!!! "!
 

with prescribed accuracy. The desired motion in this case 

can be defined by means of a reference model (RM). In 

other words we need to satisfy relationship  

( ) ( ) ( ) ( ) ,m me x t x t x t x t# $%! & ' & (! !  

where $ is the prescribed accuracy for tracking of the 

reference model output. In the perfect case we have 0e %  

therefore  

(2) ( ) ( ).mx t x t!!! %! !  

This relationship is satisfied only if following conditions are 

fulfilled: 

) mathematical model of the plant fits precisely to 

the plant itself; 

) initial conditions for the plant model and reference 

model coincide precisely; 

) no disturbances affect on the plant. 

However these conditions are not satisfied usually for real 

world application problems because of uncertainties in the 

DS behavior caused by external factors as well as 

approximate nature of the plant model. 

To prevent a rise of the tracking error in time we need to 

add in Eq. (1) an auxiliary member providing elimination of 

the tracking error: 

(3) ( ).m mx x K x x!!! % ' &! !  

We have in such case, that  

(4) .e Ke!!! % &!
 

If source equations of motion for the plant had the form 

(5) ( , )x f x u!!! %!  

then we can rewrite Equation 2 in the form 

(6) ( ) ( , ( , , )).m m m mx x K x x f x u x x x!!! % ' & %! ! !  

We cannot derive analytically the required control function 

(control law) ( , , )m mu x x x! from Equation 6. Therefore we 
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have to build an approximate solution which we can obtain 

using a feedforward multilayer neural network named here 

as neurocontroller (NC) and learned with the error 

backpropagation algorithm as a standard tool for such kind 

of the networks. 
 

3 SYNTHESIS OF A NEURAL NETWORK BASED MOTION 

MODEL FOR UAV 

A plant model is needed in many of adaptive control 

schemes. Deriving of the plant model basing on some 

experimental data corresponds to the classical identification 

problem for dynamic systems [12]. We know from 

experience that using of ANN-based techniques and tools is 

very efficient way to solve this identification problem with 

regard to nonlinear systems [13]–[15]. Neural network 

simulation allows us to build rather accurate and 

computationally effective models of dynamic systems. 

 

 
 

Figure 1: Neural network based scheme for plant identification. 

Here u  is control, 
p

y  is plant output, 
m

y  is reference model 

output; $  is divergence between outputs of plant and ANN based 

model; *  is corrective action. 

 

Computational efficiency roots of ANN-based models is 

based on the following fact: an artificial neural network is 

algorithmically universal mathematical model [16], [17] 

which allows us to represent with arbitrary accuracy any 

nonlinear mapping :
n m

R R+ , . In other words we can 

represent with arbitrary accuracy any nonlinear relationship 

between n-dimensional input vector and m-dimensional 

output vector. 

A synthesis of ANN-based model for controlled nonlinear 

plant motion is interpreted below as generation of a neural 

network approximation for some source mathematical 

model of UAV motion. This source model is formulated 

frequently as a system of ordinary differential equations. 

General scheme of neural network plant identification is 

presented on Figure 1. 

Squared difference between plant output 
p

y and ANN-

based model output 
m

y both under control signal u is used 

as an error signal $ guiding a learning process for the 

ANN-based model. A trained ANN-based model realizes 

recurrent-type computational scheme using output signal 

ŷ and control signal u values for instant time it  to compute 

output signal ŷ  value for instant time 1'it . 

The NARX (Nonlinear AutoRegressive network with 

eXogeneous inputs) model was chosen to represent the 

dynamic plant because it corresponds well with UAV 

control problem. This model is a recurrent dynamic layered 

neural network with feedbacks between layers and with 

TDL (Time Delay Line) units before its inputs. 

Validation of the ANN-based model is carried out with 

regard to angular longitudinal motion of UAV described 

with a mathematical model which is rather common for air-

craft flight dynamics [18]: 

2
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where -  is angle of attack, deg; q  is pitch angular veloc-

ity, deg/sec; +  is deflection angle of elevator or elevons, 

deg; 
L

C  is lift coefficient; 
m

C  is pitching moment coeffi-

cient; m  is mass of UAV, kg; V  is airspeed, m/sec; 
2

/ 2q V/%  is airplane dynamic pressure; /  is mass air 

density, kg/m3; g is acceleration of gravity, m/sec2; S  is 

wing area of UAV, m2; c  is mean aerodynamic chord, m; 

yyI  is pitching-moment inertia, kg·m2; dimensionless coef-

ficients 
L

C  and 
m

C  are nonlinear functions with respect to 

their arguments; ,T . are time constant and relative damp-

ing factor for actuator, 
act

+  is command signal value for 

elevator actuator limited in the 
0

200  range. Variables - , 

q , +  and +!  in the model are plant states and variable 
act

+  

is plant control.  

This ANN-based model were built and described in [18] 

as applies to the considered UAV control problem. 

Validation of the model is carried out for X-04 mini-UAV 

[18] with airborne weight 4.2 kg. 

It was suggested some special way to generate training 

samplings intended to learn considered ANN-based UAV 

model. This way relates to using of very aggressive actions 

(often and strong random variations) which are carried out 

with elevator as longitudinal motion control surface to 

obtain command signal 
act

+  for the relevant actuator. The 

purpose of such approach to command signal generation is 

to ensure diversity of simulated system states as large as 

possible and to cover the system state space as uniformly 

and tightly as possible. Besides it is necessary to provide 

variety of differences between states in adjacent instant 

times as large as possible to represent dynamics of the 

simulated system in the ANN-based model with maximum 

adequacy.  

The similar approach under similar reasons is used below 

to generate training samplings for neurocontroller in the 

IDP-based scheme. It also was used for two another 

adaptive control schemes (MRAC and MPC) considered in 

[18]. 

Validation results presented on Figure 2 were obtained 

for closed-loop ANN-based UAV model using simulation. 

These data demonstrate the model efficiency as applies to 

the UAV angle of attack tracking problem for dynamically 

specified reference values of this angle. The results show us 

Proceedings of the International Micro Air Vehicle conference and flight competition 2011 summer edition

120



 

 

rather high simulation accuracy of the suggested approach. 

Simulation error which equals a difference between UAV 

state and ANN-model output does not exceed 0.3 deg for all 

experimentally studied conditions. 

 

 

 
Figure 2: Synthesis of ANN-based plant model for X-04 UAV in 

respect to flight regime with indicated airspeed 70
i

V % km/h and 

altitude 10H % m. Here -  is angle of attack, deg; e
-

 is 

difference between angle of attack values for the plant and ANN-

based model, deg; q  is pitch angular velocity, deg;/sec; 
e
1  is 

angle of elevator deflection, deg; qe  is difference between pitch 

angular velocities for the plant and ANN-based model, deg/sec; t  is 

time, sec. 

 

4 SYNTHESIS OF INVERSE DYNAMICS BASED DAMAGE 

TOLERANT ADAPTIVE CONTROL FOR UAV 

An application of traditional control theory requires us to 

know plant mathematical model as well as values of plant 

and environment parameters and characteristics. These 

requirements can be satisfied not always in practice. Besides 

values of plant parameters and characteristics can change in 

the course of its operation. Traditional control theory 

methods lead often to unacceptable results in that case. 

Because of such situation a demand arises to build control 

systems which do not require full a priori knowledge about 

the plant and its environment. These systems must afford to 

adjust themselves to changing conditions including plant 

and environment properties. Adaptive systems satisfy such 

demand. They use current available information not only to 

generate control actions just as it occurs in traditional 

control systems but to correct a control law. 

A general structure of adaptive system can be repre-

sented as it is shows on Figure 3. As we can see from Fig. 6, 

corrective action ( )t*  for the controller is generated by 

means of some adaptation mechanism which uses control 

signal )(tu , plant output signal )(ty  and some additional 

“external” information 23##4 ),( to provide the correc-

tive action. The additional information can be necessary to 

take into account some data enter into the UAV motion 

model as parameters, e.g. airspeed and altitude in model of 

UAV angular motion. 

 

 

 
 

Figure 3: A controlled system scheme with adjustable control law: 

Here ( )r t  is reference signal; ( )u t  is control; ( )y t  is plant 

output; ( )t*  is corrective action for controller; ( ),4 # # 32  

is some additional information we need to take into account while 

generating control signal value, for example, velocity and altitude 

values for UAV as applies to angular motion control problem. 

 

There are numerous adaptive control schemes including 

ANN-based ones [1]–[8]. The MRAC (Model Reference 

Adaptive Control) and MPC (Model Predictive Control) 

schemes belong to the most frequently used ones (see 

Figures 4 and 5 respectively).  

A controller in the MRAC scheme can be implemented 

basing on an artificial neural network. A learning process 

for the ANN-based controller named below as 

neurocontroller is accomplished to satisfy proximity 

condition for motions realized with the reference model and 

the plant under synthesized control law. The reference 

model shows an idea of control system designer about 

“good” or appropriate behavior of the plant which need to 

be tracked with the neurocontroller.  

The MPC scheme exploits a plant model used to predict 

future behavior of the plant together with some optimization 

algorithm to choose appropriate control actions providing 

best values of predicted characteristics for the considered 

system. 

We have considered MRAC and MPC schemes as applies 

to control UAV longitudinal short-period motion in our 

previous paper [18]. One more scheme is discussed in this 

article. This scheme is based on the inverse dynamics 

problem (IDP) approach. It is used to stabilize a prescribed 

value for UAV angle of attack which transmits from the 

pitch control channel. 
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Figure 4. General scheme for a model reference adaptive control. 

Here ( )r t  is a reference signal;  ( )
p

y t  is a plant output; ˆ ( )y t  is an 

output of the ANN-model;  ( )
rm

y t  is a reference model output; 

*

( )u t  control signal generating with neurocontroller; 
add

( )u t  is 

additional control signal generated with a compensator; ( )u t  is 

combined control input acting on the plant; ( ) ( ) ( )
p m

t y t y t$ % &  is 

a difference between outputs of plant and reference model. 

 

Figure 5. General scheme for a model predictive control. Here ( )r t  

is a reference signal;  ( )
p

y t  is a plant output; ˆ ( )y t  is an output of 

the ANN-model;  ( )
rm

y t  is a reference model output; 
*

( )u t  

control signal generating with predictive controller based on 

optimization algorithm; 
add

( )u t  is additional control signal 

generated with a compensator; ( )u t  is combined control input 

acting on the plant; ( ) ( ) ( )
p m

t y t y t$ % &  is a difference between 

outputs of plant and reference model. 

 

 
 

Figure 6: Structure of the IDP-controlled system. Here -  and 

m
-   is angle of attack from UAV and reference model, q  is 

pitch angular velocity, 
m

e  is divergence between outputs of plant 

and reference model; 1 , e1 and 
NN

1  are control signals. 

 

 
 

Figure 7: Neural network based scheme for plant identification. 

Here 
ref
5  and 

ref
-  are required values for pitch angle and angle 

of attack; m-  is angle of attack from reference model; q  is pitch 

angular velocity. ‘Trajectory generator’ here is the reference 

model and ‘Inverse dynamic-!’ is the IDP-based neurocontroller. 

 

A flowchart for the IDP-controlled system is shown on 

Figure 6. The neurocontroller generates here a control signal 

to track precisely the reference trajectory generated by the 

reference model and the dynamic PD-compensator 

( )mK x x&  adjust the control signal to decrease a value of 

difference between actual trajectory ,x x!
 

and reference 

one ,m mx x! , i.e. a value of the tracking error.  

The neurocontroller shown on Figure 6 is a part of the 

UAV pitch control channel presented on Figure 7. Input of 

the pitch channel is prescribed value for UAV pitch angle 

transmitted from the trajectory control channel. 

The controller in the IDP scheme is implemented basing 

on an artificial neural network. A learning process for the 

controller named here as neurocontroller is accomplished to 

satisfy proximity condition for motions realized with the 

reference model and the plant under synthesized control 

law. The reference model shows an idea of control system 

designer about “good” or appropriate behavior of the plant 

which need to be tracked with the neurocontroller.  

The reference model can be defined in a variety of ways. 

Within this article the reference model is built basing on an 

oscillatory link with rather high damping ratio in aggregate 

with an aperiodic link interpreted as a prefilter. It is ac-

cepted that the reference model defined as 

  (7)  

2

2 2
((1 ) 1)( 2 )

RM

PF RM RM RM

W
p p p

-

6

6 6 7 6
%

' ' '
   

if the UAV motion is described by means of equations men-

tioned above. In model (7) parameter values are specified as 

5
RM

6 % 1/ sec, 80
PF

6 % , 0.8
RM

. % for mini-UAV X-

04. Here 
RM

6  and 
PF

6 are natural frequencies of the os-

cillatory and aperiodic links; 
RM

. is damping ratio for the 

oscillatory link. 

The ANN-based plant model obtained above is used to 

implement learning process for the neurocontroller. The 

adjustment purpose specified for the neurocontroller con-

sists in minimization of the error ˆ
rm

y y& . In other words it 

is needed to bring the plant under neurocontroller behavior 

nearer as possible to the reference model behavior. If the 

ANN-based model has appropriate accuracy then the neuro-

controller will minimize “genuine” error 
rm

y y& too, i.e. it 

will try to reduce a difference between behavior of the 

ANN-based plant model and the real plant under the same 

neurocontroller actions. 
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Figure 8: Simulation results for the IDP-based system with adapta-

tion in the angle of attack stabilization loop. 

 

 

 

 

 

 
 

Figure 9: Simulation results for the IDP-based system without adap-

tation in the angle of attack stabilization loop. 

 

 

 

 

 

 
 

Figure 10: Comparison of control quality for pitch angle before and 

after damage with adaptation in the angle of attack stabilization 

loop. 

 

 

 

 

 
 

Figure 11: Comparison of control quality for pitch angle before and 

after damage without adaptation in the angle of attack stabilization 

loop. 
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Simulation results for the IDP-based adaptive control 

scheme are presented on Figures 8 and 9. All of 

computational experiments were carried out for X-04 mini-

UAV [18]. An indicated airspeed iV  is used here as an 

external parameter to specify aircraft flight regime. All data 

presented on Figures 8 and 9 were obtained for 

70
i

V % km/h. Here 5  is pitch angle, deg; -  is angle of 

attack, deg; -e  is tracking error for angle of attack, deg; q  

is pitch angular velocity, deg/sec; 
e
1 is elevator deflection 

angle, deg; t  is time, sec; RefTrajectory is output of the 

reference model. 

Capabilities are demonstrated here for adaptation to 

abrupt changes of plant dynamics: 1) center of gravity aft 

shift on 15% in instant time 10t %  sec; 2) decreasing of 

elevator efficiency on 50%  at the same instant time. 

Figures 10 and 11 shows us comparison results for 

control quality as applies to pitch angle channel with and 

without adaptation in the angle of attack stabilization loop 

(Figures 8 and 9 respectively). Besides we can see an 

influence of damage on control quality for conventional 

controller to compare it with IDP-based one. 

 

 

 
 

Figure 12: Influence of damage on control quality for conventional 

controller. 

 

 

Simulation results (see Figures from 8 through 12) dem-

onstrate how the IDP-based system equipped with the PD-

compensator manage effects of two simultaneous damages 

influencing significantly on the plant dynamics. First of the 

damages leads to UAV center of gravity aft shift on 15%. It 

occurs in instant time 10t %  sec. The second damage 

causes decreasing of longitudinal control efficiency on 50% 

at the same instant time. We can see that the IDP-based 

scheme provides operation with a slight error (as a rule 

0, 05e
-
8 0 deg) until the first failure occurs. Adaptation to 

the plant dynamic change in this case executes quite rapidly 

taking 1.2–1.5 sec approximately. The tracking error is now 

larger than before the failure but its value still lies in the 

range 0.2e
-
8 0 deg and the system stability is unbroken. 

After the second failure the system stability is still unbroken 

although the tracking error values become rather large, their 

values belong mostly to the range 0.5e
-
8 0 . 

Thus the suggested reconfiguration scheme for the UAV 

motion control law proves its efficiency as a tool which al-

lows us to suppress on-the-fly effects of equipment failures 

and structural damages. Therefore we can ensure some 

specified level of fault tolerance and damage tolerance for 

the UAV control system. 

We can compare these results with simulation results ob-

tained in [18] for the MRAC and MPC control systems 

equipped with the PD-compensator as applies to the same 

X-04 UAV under the same failure cases. Both MRAC and 

MPC schemes provide operation with the same error value 

( 0.05e
-
8 0 deg) until the first failure as it occurs for the 

IDP scheme. Adaptation to the plant dynamic change for 

MRAC and MPC schemes executes taking 1.2–1.6 sec ap-

proximately. The tracking error values are 

(0.18 0.22)e
-
8 0 & deg after the first failure and the sys-

tem stability is unbroken. After the second failure the sys-

tem stability is still unbroken for both MRAC and MPC 

cases [17]. The relevant tracking error values are 

(0.48 0.52)e
-
8 0 & deg after the second failure. Thus the 

MRAC-based and MPC-based reconfiguration schemes for 

the UAV motion control law have in whole very similar 

properties in comparison with IDP-based scheme. 

The most important conclusion following from the simu-

lation results for the IDP-based system as well as for 

MRAC-based and MPC-based systems (see [18]) consists in 

the fact that all of these systems can operate successfully 

including cases with UAV equipment faults and structural 

damages. 

5 CONCLUSION

Investigations considered above show us that the ANN-

based approach to build models of complex nonlinear 

dynamic systems is very effective from the standpoint of 

simulation accuracy as well as processing speed while using 

these models. Such ANN-based model features are 

especially important for on-board implementation of UAV 

control laws. 

The obtained results demonstrate clearly that the ANN-

based approach to control complex nonlinear dynamic 

systems under uncertainty conditions using adaptation 

mechanisms allows us to adjust control systems effectively 

in respect to a current situation including emergence of 

various failures and damages in UAV equipment and 

structure. Neural network based techniques and tools show 

us very high efficiency concerning adaptive fault-tolerant 

and damage-tolerant control for nonlinear systems under 

various kinds of uncertainty. 

Comparison of the MRAC, MPC, and IDP systems do not 

allow us to prefer explicitly one of these adaptive control 
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schemes. Each of these systems has both positive and 

negative properties. Some final choice between MRAC, 

MPC, and IDP control systems can be carried out only with 

regard to specific application problem performing 

sufficiently large sequence of computational experiments. 
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ABSTRACT

A reasonable selection of wing airfoil is very important 

part of aerodynamic design process for micro-UAVs. The 

selected airfoil predetermines substantially performan-

ces of the designed UAV. This reason causes us to pay 

attention to the problem of UAV wing airfoil selection 

taking into account properties specific for micro-UAVs. 

A concept of multitask design is suggested to solve this 

kind of problems. This concept is explained in regard to 

selection process for micro-UAV airfoil. Presented 

simulation results demonstrate that using of multitask 

approach to aerodynamic design of micro-UAV enables 

us to enhance UAV efficiency due to improvement of its 

aerodynamic perfection.

1 INTRODUCTION

A class of very-small unmanned aerial vehicles (micro-

UAVs) includes UAVs with a mass in the range from 

several dozen grams up to 1 kg or up to 5 kg according to 

other appraisals. Micro-UAVs are equipped mostly with 

electric propulsion system consists of rechargeable battery 

and electric engine to drive propeller. There are many 

papers related to reasonable selection of design parameters 

for a micro-UAV including selection of its airfoil [1]–[8], 

[10], and [14]. A reasonable selection of wing airfoil is very 

important part of aerodynamic design process for any 

micro-UAV. The selected airfoil predetermines substantially 

lift to drag ratio, altitude-airspeed performance, stalling 

performance as well as takeoff and landing performance for 

the designed UAV. These reasons stimulate us to investigate 

the problem of UAV wing airfoil selection taking into 

account properties specific for micro-UAVs. 

 

2 AN  INFLUENCE OF FLIGHT REGIMES ON SELECTION 

OF WING AIRFOIL FOR MICRO-UAVS

The wing airfoil selection problem for micro-UAVs has 

some peculiarities caused by reasons discussed below.  

1. Low airspeeds and low Reylolds number values. 

Airspeed values for typical micro-UAVs are usually in the 

range from 8–10 m/sec to 25–30 m/sec. This range is 

specified by requirements which are formulated usually to 

the UAV. According to these requirements the UAV should 

have capability to carry out flight tasks both during calm 

and at strong enough wind. In combination with small UAV 

dimensions it leads to a situation when UAV flies in about 

critical Reynolds number values if it is near to the bottom of 

the UAV airspeed range. It is important because of almost 

all aerodynamic characteristics change considerably for 

critical Reynolds number values [1], [2], and [14]. 

Critical Reynolds number values are from 80000 to 

140000 for various wing airfoils. A transition from 

subcritical Reynolds number values to supercritical ones 

causes essential enhancement of UAV aerodynamic 

characteristics. For example UAV lift to drag ratio rises 

approximately on 50% in this case. 

For subcritical Reynolds number values, i.e. for low 

airspeed, airfoils with small relative thickness (5–7%) and 

with large relative concavity (even downstream airfoil face 

is concave in this case) are preferable if we need to 

maximize airfoil lift to drag ratio. These airfoils become 

inefficient if airspeed increases because of enhancement for 

airfoil profile drag. 

For middle airspeed values (U=15–20 m/sec) airfoils with 

relative thickness approximately 14–16% and with almost 

flat or even convex downstream face are most preferable. 

Finally, for large airspeeds (for micro-UAV airspeed 

about U=25–30 !/" is large enough) sufficiently thin airfoils 

(8–12%) become preferable again but this time they need to 

be close to symmetrical one with small relative concavity. 

The fact is that we do not need high values of UAV lift 

coefficient for these relatively large airspeeds but it is very 

desirable to decrease airfoil profile drag. 

Thus, the requirements claimed to airfoils in regard to 

various flight regimes are obviously contradictory. 

2. Nonstationarity of aerodynamic characteristics for 

micro-UAV with respect to Reynolds number and angle of 

attack values. If micro-UAVs flied all the time on small 

Reynolds numbers including subcritical ones then it would 

leads only to some decreasing of their lift to drag ratio in 

comparison with the flight within supercritical Reynolds 

number region. However, micro-UAVs have very small 

flight weight and small wing load values. Then micro-UAV 

under a gust influence can transits very quickly (for few 

seconds) from subcritical Reynolds numbers to supercritical 

ones and back to subcritical Reynolds numbers. These 

transitions cause significant changes in UAV aerodynamic 

characteristics. 

Micro-UAVs have small values for moments of inertia 

about X, Y, and Z body axes. For this reason micro-UAVs 

have large angular accelerations and large angular velocities 

p, q, and r. Moreover, instantaneous center of rotation for 

micro-UAV do not coincide as a rule with center of gravity 

for the UAV. Quick changes in angle of attack and sideslip 

values caused by the rotation lead to emergence of 

additional aerodynamic moments which depend not only 

from these angles but also from their rate of change as well 

as from roll angular velocity. We can see in this case that 
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