
 

ABSTRACT

Considered  in  this  paper  is  the  task  of  the  flapping  wing 
trajectory  optimization  for  the  minimization  of  the  wing 
consumed energy associated with the induced power losses. The 
aircraft  with such a wing assumes to move in the horizontal 
direction with the constant velocity. The flapping wing moves 
up-and-down  with  the  constant  velocity.  Nonsteady  vortex 
wake  influence  is  analyzed.  Comparison  of  the  efficiency  is 
performed for the steady case, as well as for the one with the 
sinusoidal  and  optimal  control  for  the  flapping  wing.  Also, 
comparison with another type of the thrust creation (propeller) 
is performed.

1 INTRODUCTION

The  scientists  are  motivated  to  consider  different 
problems  in  the  field  by  the  interest  produced  by  the 
flapping  wing  and  the  aircrafts  with  such  wings.  For 
example, Jones et al. [1] analyzed the wake structure behind 
plunging airfoils. They compared the picture obtained with 
the  aid  of  the  numerical  method  for  the  inviscid 
incompressible flow and the experimental results and shown 
that  the  plunging  airfoil  can  produce  drag,  zero  drag  or 
thrust  depending  on  the  motion  parameters  (reduced 
frequency and plunging amplitude). The trust coefficient was 
obtained  and  it  was  note  that  for  the  too  small  or  large 
reduced  frequencies  the  numerical  and  the  experimental 
results no longer coincide.  It  is because of the significant 
viscous influence in the first case and the flow separation in 
the  second  one.   Tuncer  and  Platzer  [2]  compared  the 
numerical results for the plunging airfoil obtained with the 
help  of  the  different  methods:  for  the  inviscid 
incompressible flow, for the hybrid method with the Navier-
Stokes equations solving in the boundary layer and for the 
viscous flow. It was shown that these methods give the close 
results (Re ~106). They also investigated the questions of the 
plunging airfoil efficiency and of the two airfoils in tandem 
interaction and their efficiency. Tuncer and Kay [3] solved 
the  optimization  task  for  the  thrust  and  efficiency 
maximization for the airfoil in a combined plunge and pitch 
with  the  plunge  and  pitch  amplitudes  and  phase  shift 
between them as optimization parameters.   Then they and 
Jones  and  Platzer  [4]  solved  similar  problem for  the two 
airfoils in a biplane configuration.  Nagai and Hayase [5] 
investigated  numerically  and  experimentally  aerodynamic 
characteristics of the insect wing in the forward flight and its 
efficiency.  Bermang and Wang [6] considered the case of 
the  hovering  insect  flight  and  have  found  optimal  wing 
kinematic  which  minimize  power  consumption.  Wang [7] 
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has sought the simplest efficient flapping motions with the 
aid of the model of the quasi-steady forces, and has made the 
comparison with the steady forward flight. 

But up to now, in our opinion there are no enough studies 
concerned  the  question  about  optimal  kinematic  of  the 
flapping wing motion. So this work deals with this question; 
analytical  and numerical  investigations  were made for  the 
flapping wing efficiency determination  for  a  typical  case. 
The results  obtained were compared with the “traditional” 
type of the thrust generation (propeller).

2 MODEL

Flight of the aircraft in the horizontal direction with the 
constant  speed  at  the  steady  altitude  is  considered.  The 
model of the aircraft investigated is shown schematically in 
fig.1;  it  has the fixed wing for the lift  production and the 
flapping wing (or wings) only for the thrust creation (as in 
[8]). The flapping wing creates also the lift at every moment 
of the motion but since the lift is positive during downstroke 
and negative during upstroke the period-average lift is zero. 
Besides,  the  interaction  between  the  fixed  wing  and  the 
flapping one was ignored. 

Fig.1 Model of the aitcraft

It is assumed that the wing is perfectly rigid (do not change 
its form under load) and its mass and moment of inertia are 
zero (i.e., wing speed and its orientation in space can change 
instantly). It has shown early [9] for the case without taking 
the  nonsteady  effect  into  consideration  that  the  flapping 
wing  should  moves  in  a  straight  line  with  the  constant 
velocity for the consumed power minimization. So in this 
study  the  flapping  wing  performs  the  plunging  motion 
moving up and down with the constant velocity vy.  It  can 
also perform the pitching motion. The oscillation amplitude 
and  frequency  are  considered  so  that  the  vortex  wake 
remains nearly plane. The diagram of the forces acting on 
the flapping wing is presented in fig. 2.
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Fig. 2 Diagram of the forces on the flapping wing

It  was  shown  in  [10] that  there  exists  a  region  of  the 
parameters of the flapping wing motion (reduced frequency 
and  amplitude)  where  the  Kutta  condition  is  valid.  So, 
assume that our wing parameters correspond to this region. 
This means that the flow is coming off the trailing edge of 
the wing without separation.

3 VORTEX WAKE INFLUENCE EVALUATION

The problem in a simplified statement (model task) has 
been  considered  to  understand  the  main  features  of  the 
processes taken place.

The wing is modeled with the bound vortex and two 
free vortices coming off the wing tips and closing to “rings” 
when the  vertical  velocity component  is  reversed  (Fig.3). 
Assume that the circulation distribution is constant along the 
wing.   

Fig.3 Simplified model for nonstationarity influence investigation

It is well known [11] that the induced velocity Vi from the 
vortex section at a certain point of observation is given by 
the formula

( )ϕθ
π
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where  Γ is the circulation,  h is the length of perpendicular 
between the observation point  and the line containing the 
vortex section,  θ and  ϕ are   the angles between the lines 
from the observation points to the ends of the vortex section 
and the line of the vortex section (see Fig.4).

                                  

Fig. 4 Vortex section

The  analytical  formula  was  found  for  the  induced 
velocity created  at  a  certain  wing point  M(z)  at  a  certain 
moment  of  wing  motion  as  the  sum  of  the  velocities 
generated by all the vortex sections:
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Since  the  above  expression  is  too  complicated  for  the 

analytical  investigation,  the  numerical  analysis  was 
conducted for the detection of the main features.

As the value of the circulation at  the wing tips must 
always be equal to zero [11], let us specify the circulation 
function as:

Γ=Γ0, ε<z<L-ε,
Γ=0, 0<z<ε, L-ε<z<L,

where  ε  is  a  certain  parameter ε«L,  L –  wing span.  The 
following  parameters  were  taken  for  calculation:  L=2m; 
Γ0=1m2/s; ε=0.01L; b=0.1L; p – over the range from 0.5L to 
10L., where b is the wing chord. 

Such  are  the  main  results.  The  induced  force  value 
averaged  for  a  time  period  and  for  the  wing  span  was 
obtained. The nearest to the wing vortices was found to give 
the main contribution. The induced velocities of the vortex 
wake generate on the wing alternate in direction forces, the 
first of them being positive (drag).

The comparison with the stationary case was made, the 
wing being modeled with the bound vortex and two infinite 
free vortices (Fig.5). 

Fig.5 Comparison with the steady case

Here, ∆F100 is the difference between the force in the steady 
case  and  the  force  from the  first  hundred  vortex  circular 
elements,  ∆F2 is  the  difference  between  the  force  in  the 
steady case and the force from the first two vortex circular 



elements and σ is the difference between ∆F100  and ∆F2. As 
shown in the figure the neglecting of all the vortices, starting 
with the third one, gives the error of the several percent if 
the value of the parameter p/L is not too small. The force 
dependence on the wing position during the period is shown 
in fig. 6.

Fig.6 Plot of force vs. the wing position during the period

The horizontal line corresponds to the force in the steady 
case; dashed line corresponds to the nonsteady force.  The 
light-green line and the green one are the forces from the 
first  perpendicular  and  parallel  to  the  wing  vortices 
accordingly.
The light-red line and the red one are the forces from the two 
nearest to the wing vortices. One can see that the significant 
extra drag force appears at the beginning of the period and 
then  decreases  fast,  and  during  the  rest  of  the  time  the 
movement is close to the stationary case.

4 OPTIMIZATION TASK

It  is  obvious  that  the  instantaneous  changing  of  the 
circulation value may not correspond to the optimal case, so 
for  simplicity let’s assume that  the circulation distribution 
along  the  wing  span  is  constant  but  suppose,  that  the 
circulation time dependence is a certain periodical function 
Γ(t), that is due to the wing pitching motion (Fig.7).

Fig.7 Vortex sheet investigated

At every moment of the motion,  the horseshoe vortex with 

the circulation ξ
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wing.  The  span-averaged  induced  velocity generated  with 
the vortex wake of length of 2p is:
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The induced force is F=ρ(vi+ui)Γ,  and the required power 
for  this  force  generation  is  Wi=FV∞.  The  problem  is  to 
minimize the period-average induced power Wi, that is:
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As we assume that  the  flapping wing produces  no  lift  in 
average,  then  the  following  condition  must  be  taken  into 
account:
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Let’s  expand  the  periodical  circulation  function  in  the 
Fourier series and determine the zero moment of time so that 
the sine function will only present in the expression: 
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Assume that  the  interchange the operations  of  summation 
and integration can be done. By substituting expression (3) 
into (1), (2) and carrying out some transformations, one can 
obtain:
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where  Φ is  the  expression  in  the  square  brackets  from 
formula for vi after integration with respect to z.



Then,  the  optimization  task  can  be  reformulated: it  is 
required to minimize the function
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where tilde over n means that odd summand only appear in 
the  sum,  since  the  rest  is  nulled  after  the  integration. 
Lagrange function for this task is:
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where λ is the Lagrange coefficient, С0  is the constant from 
condition (2).
Optimum conditions are as:
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 Really  optimal  solution  can  be  obtained  only  if  all  the 
harmonics  of  oscillations  are  taken into  account.  But  this 
task is very difficult to solve and to analyze. Also, it is well 
known that usually the amplitudes of higher harmonics are 
rather  small in comparison with the first  ones.  So,  it  was 
decided  to  analyze  the  optimization  problem  only  for  a 
series of the first harmonics. 

The solution for the optimization task was found for a 
set of values of n for a set of values of С0 (the constant const 
from condition (2)). For example, the circulation function of 
optimal control is given in fig. 8,9 for 1, 2, 3, 4, 5 and 15 
harmonics under conditions С0=30 W.

For  n more or equal 3 the graphics are rather close to 
each other (as it  was assumed above),  so we may content 
with the first several harmonics.

Fig.8 Function of optimal control obtained; n=1,2,3,4,5

Fig.9 Function of optimal control obtained; n=1,15

5 EFFICIENCY DETERMINATION AND COMPARISONS

It  is interesting to compare the gain with the optimal 
control of the wing in comparison with more often used and 
more easily implemented sinusoidal movement law (number 
of harmonics is 1).  Let’s determinate the efficiency as the 
rate  of  the  period-averaged  useful  power  (i.e.,  the  one 
suitable to wing thrust) to the mean full power (i.e., the one 
spent to the oscillatory motion). 
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С0,W η1 η2 η3 η4 η5

1 0.99088 0.99129 0.99138 0.9914 0.9914
10 0.89971 0.90423 0.90522 0.9056 0.9058
20 0.80855 0.81717 0.81905 0.8198 0.8201
30 0.71739 0.73011 0.73289 0.7339 0.7344
40 0.62622 0.64306 0.64673 0.6481 0.6488
50 0.53506 0.55600 0.56056 0.5623 0.5631

Tab.1  The numerical comparison the  efficiencies for optimal
 and sinusoidal control p/l=1

С0,W η1 η2 η3 η4 η5

1 0.99396 0.99427 0.99434 0.99436 0.9944
10 0.93359 0.93697 0.93773 0.93802 0.9381
20 0.87323 0.87967 0.88113 0.88169 0.8819
30 0.81286 0.82238 0.82453 0.82535 0.8257
40 0.75249 0.76508 0.76793 0.76901 0.7695
50 0.69213 0.70779 0.71133 0.71267 0.7133

Tab.2  The numerical comparison  the efficiencies  for optimal and 
sinusoidal control p/l=2
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 The  numerical  investigation  was  made  for  a  set  of 
parameters:  l=1m,  p=2l  and p=l, vy=2m/s.  The results  are 
given in Tab.1 and Tab.2 for a set of values  С0;  η2 – the 
efficiency for the optimal control case when the optimization 
task is solved for n=2 (the circulation function includes two 
harmonics); η3, η4, η5 are defined similarly when n=3 and n=4; 
n=5; η1 is the efficiency for the sinusoidal control.
 It is obvious that the increase of the number of harmonics 
more than two practically do not produce any changes in the 
efficiency advantages.  The optimal control utilization gives 
a little gain and it  is  the smaller  the longer  period of the 
motion.

 The comparison of the efficiency for the steady case 
with the sinusoidal control one and the optimal control (n=5) 
one was made. The plot of η(T), where T is the wing thrust, 
is presented in fig. 10.

Fig.10 Efficiency versus the wing thrust for the steady and the 
nonsteady cases

6 COMPARISON WITH THE IDEAL PROPELLER

Assume the propeller will be taken to be the flapping 
wing equivalent if they are of the same swept area. Then, the 
equivalent propeller diameter is

(4)                          
∞

=
V
vplD y

π
4                    

The coefficient of the efficiency of the ideal propeller is 
defined as [10]:
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The coefficient of the efficiency of the ideal propeller is 
much more than the efficiency of the flapping wing, even for 
the steady case (fig.11).

Fig.11 Efficiency comparison for p/l=2

7 COMPARISON WITH THE PROPELLER BLADE ELEMENT THEORY

The quasilinear statement of the problem is used, i.e. 
the  diameter  of  the  stream  from  the  propeller  remains 
practically  constant  [12].  Assume  the  circulation  of  the 
bound vortex along the blade is constant. Then, the vortex 
sheet is the vortices coming of the blade tip and the hub. Let 
us define the angular velocity ω of the equivalent propeller 
(4) so that the rotary velocity for the characteristic section at 
0.5R to be equal to vy:

(5)                                 
R

v y

5.0
2π

ω = . 

The efficiency for such propeller is

K

T

m
VC

=η ;

∫ Γ=
1

1
0

8
r

T rdUC , ∫ Γ=
1

1
0

8
r

K rdrVm

are the thrust and power coefficients of the propeller,  V is 

the free stream relative velocity,  11 urU −= ,  11 vVV +=  
are  the  relative  velocity  components  of  the  real  stream, 

)1(
22

2

1 Γ−Γ+





+−= VVv  and 

r
u Γ=  1  are the axial and 

the  peripheral  components  of  the  induced  velocity.  The 
velocities marked by bar are related to the blades tips rate 

ωR,  24 Rπ ω
Γ=Γ . The dependency of η(T) was obtained for 

the same parameters that in the flapping wing case (fig.11). 
It is practically the same the efficiency of flapping wing (in 
the case of p/l=2). The dependency for the p/l=1 is presented 



in fig.12.

Fig.12 Efficiency comparison for p/l=1

As shown in the figure the efficiency of the propeller is less 
than for the flapping wing one.

Also  it  should  be  mentioned  that  the  results  of 
comparison  strongly  depend  on  the  method  of  ω 
determination (see (5)). If  ω is defined so that the distances 
which  the  vortex  wake  passes  during  the  one  swing  and 
during the one propeller period are equal:

p
V∞= πω

the  propeller  efficiency is  appeared  more  higher  for  both 
parameters p/l (fig. 11,12). So the results of the comparison 
are  not  full  clear.  Furthermore,  the  criterion  of  the 
comparison for  the flapping wing in such statement is  no 
accurate,  so the results  presented for the propeller can be 
only qualitative.

8 CONCLUDING REMARKS AND FUTURE WORK

It  is  well  known  that  the  constant  circulation 
distribution is the non-optimal regime both for the propeller 
and the wing. So, in future, the similar task for the elliptical 
circulation  distribution  is  planning  to  be  solved.   It  is 
possible that the more clear results would be obtained.

Also  it  should  be  mentioned  that  we are  taking into 
account  only  the  power  losses  due  to  vortices.  But  also 
viscous drag must be taken into account in the analysis of 
efficiency. 

9 CONCLUSIONS

1.  The  analytical  model  was  proposed  for  the  nonsteady 
effects study.
2.  The nearest to the wing vortices were found to give the 
main contribution to the drag.
3.  The  method  of  the  optimization  problem solution  was 
proposed based on the expansion of the characteristics in the 
Fourier series.
4.  The  optimal  control  laws  were  found for  the  different 
harmonics numbers. The optimal control utilization gives a 
little gain in comparison with sinusoidal circulation and it is 
smaller the motion period is longer.  

5. The comparison with another variant of the thrust creation 
was  made.  It  was  shown  that  the  result  of  comparison 
strongly depends on the way of ω determination.
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