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ABSTRACT

The paper presents a derivation of the equations
of motion for a flapping wing micro-air vehi-
cle. The equations of motion are derived using
D’Alembert’s Principle extended to rigid bod-
ies. The micro-air vehicle is modeled as a a sys-
tem of three rigid bodies with rigidly attached
wings. Each wing has three separate degrees
of freedom: flapping, lagging, and feathering.
The MAV is assumed to be operating in an envi-
ronment with a flat Earth, constant gravity, zero
wind, and the MAV has constant mass. The
model is simulated using time-averaged aerody-
namic force and moment data in a normal hover-
ing mode.

1 NOMENCLATURE

X , Y , Z: components of the position vector of the central
body in an inertial frame
ψ, θ, φ: 3-2-1 Euler Angles for the orientation of the central
body with respect to a inertial frame
αR, αL: angle of attack of the right and left wings, respec-
tively (rotation about b̄y axis)
δR, δL: flapping angle of the right and left wings, respec-
tively (rotation about b̄x axis, up and down flapping motion)
ζR, ζL: lagging angle of the right and left wings respectively
(rotation about b̄z axis, forward and back flapping motion)
u, v, w: components of the translational velocity vector of
the central body
p, q, r: components of the angular velocity vector of the
central body
α̇R, α̇L: time rate of change of the angle of attack
˙δR, ˙δL: time rate of change of the flapping angle
˙ζR, ˙ζL: time rate of change of the lagging angle

m1, m2, m3: mass of the central body, mass of the right wing
and mass of the left wing
ρ̄c2, ρ̄c3: position vectors from the hinge to the respective
wing’s center of mass
R̄, L̄: position vectors of the hinge from the central body
center of mass in the B frame
b̄x, b̄y, b̄z: unit vectors of the central body-fixed frame, the B
frame
Qj : generalized forces for each generalized coordinate
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γ̄ij : velocity coefficient of the ith body with respect to the
jth generalized speed
β̄ij : angular velocity coefficient of the ith body with respect
to the jth generalized speed
[Fx, Fy, Fz]: aerodynamics forces in body-fixed coordinates
[L, M, N ]: aerodynamics moments in body-fixed coordinates
B: body-fixed frame for the central body
HR: body-fixed frame for the central body, origin at right
wing hinge
HL: body-fixed frame for the central body, origin at left
wing hinge
WR: body-fixed frame for the right wing
WL: body-fixed frame for the left wing
I1: inertia tensor for the central body in the B frame
I2: inertia tensor for the right wing in the WR frame
I3: inertia tensor for the left wing in the WL frame
I′2, I′3: inertia tensors for the right wing and left wing in the
HR and HL frames
RB : rotation matrix from inertial frame to B frame using
3-2-1 Euler Angles
RR: rotation matrix from WR frame to HR frame
RL: rotation matrix from WL frame to HL frame
RζR ,RαR ,RδR : individual rotation matrices for WR frame
to HR frame
RζL ,RαL ,RδL : individual rotation matrices for WL frame
to HL frame

2 INTRODUCTION

The goal of the presented research, as well as future work,
is to further the knowledge of the dynamic behavior of a flap-
ping wing vehicle and to develop effective control schemes
for the operation of a flapping wing vehicle in a relevant envi-
ronment. The research in the flapping wing field has greatly
increased over the past 10 years, especially in aerodynam-
ics [1]. Complex models of flapping wing aerodynamics, to
include 3-D effects, have been successfully developed, eval-
uated and implemented [2, 3]. The next step is to take the
knowledge of the complex and unstable aerodynamics and
incorporate that knowledge into a successful control scheme,
either by nonlinear methods, linear methods, or a combina-
tion of both.

In order to successfully implement the control scheme,
the development and thorough understanding of the nonlin-
ear dynamics and kinematics is paramount. The paper out-
lines the development of a dynamic model for a flapping-wing

1



MAV. The preliminary goal for vehicle size is a total mass
of 30 grams and a total wingspan of approximately 15 cen-
timeters. The method used to derive the equations of motion
is D’Alembert’s Principle for Multiple Rigid Bodies, which
is a hybrid of LaGrangian and Eulerian techniques [4]. The
flapping wing MAV is modeled as three rigid bodies (central
body, right wing, left wing) with a rigid airframe and rigidly
attached wings. The nonlinear dynamics will be incorporated
with lift, drag and aerodynamic moment data from models
developed in reference [5]. The combination of the nonlinear
dynamics and aerodynamics should allow for accurate study
of the motion of the vehicle. It will enable the discovery of
steady-state flight configurations and the eventual develop-
ment of effective control schemes.

The paper is organized in the following manner. Section
3 is a brief literature review focusing on the dynamic models
and control schemes for a flapping wing micro-air vehicle.
Section 4 presents a detailed development of the model with
relevant reference frames and the derivation of the nonlinear
equations of motion. Section 5 presents the simulation efforts
and results, accompanied by the dynamic and aerodynamic
models used in the simulation. Section 6 presents Conclu-
sions and Future Work.

3 LITERATURE REVIEW

The majority of the previous work in regards to flapping
wing vehicles focuses on the aerodynamics and the interac-
tions of the flapping wings with the fluid flow around the
wings. A limited amount of work has been completed in
regards to the development of dynamic models and control
schemes to successfully operate a flapping wing micro-air ve-
hicle.

Sun and Wang [1] acknowledge that the field of aerody-
namics, in regards to insect flight, is highly studied. The main
purpose of reference [1] is to produce a quantitative analy-
sis of the stability of hovering flight for a model insect. The
authors chose a dynamics model previously given in [6, 7].
The dynamics model chosen is the standard, linearized air-
craft dynamics that can be found in [8]. In contrast to the
Taylor and Thomas model [7], Sun and Wang use stability
and control derivatives calculated by CFD methods. Taylor
and Thomas used time average aerodynamics force and mo-
ment calculations for a wing beat cycle. The Sun and Wang
model limits the model to have six degrees of freedom, but en-
hances the linearization and simplification of the model with
improved accuracy of the aerodynamics, versus the models
used by Taylor and Thomas.

The authors choose the equilibrium point for their anal-
ysis to be motionless hovering, with no translational or rota-
tional accelerations. The wings need to accelerate to maintain
the flight condition. Sun and Wang make further simplifica-
tions, given the flight conditions, by only accounting for the
x and z translational motion of the model, in addition to the
pitching motion and pitch angle, q and θ, respectively. The

equilibrium point is determined by balancing the force and
moment equations. The stability derivatives are calculated
by only taking into account the motion of the wings, for at
hovering the aerodynamics of the central body are neglected
due to the absence of translational motion. Sun and Wang
concluded that the hovering motion can be stabilized using a
combination of two of the four available controls (δΦ, change
in position, δφ, change in mean position, α1, equal change in
angle of attack, and α2, differential change in the angle of
attack).

In reference [9], the authors derived the equations of mo-
tion for a flapping wing vehicle using Eulerian methods. The
central body is modeled as a point mass without mass mo-
ments of inertia. The hinge point for both wings is the same
and is positioned at the central body. The goal of the paper
is to study trajectory guidance, and not exactly implement a
control scheme, so the assumptions and model simplifications
seem justified. Modeling the central body as a point mass ef-
fectively eliminates the rotational considerations of the cen-
tral body and the coupling effects between the flapping mo-
tion of the wings and rotation of the central body. The authors
use two body-fixed reference frames, one for each wing. The
wings are modeled with three degrees of freedom: plunge
(up and down flapping), pitch (angle of attack), and sweep
(forward and back flapping). The disadvantage of the two
frames, and no central body frame, requires the tracking of
the absolute translational and rotational velocity of not only
the central body, but both wings as well. Furthermore, ve-
locities calculated in each of the wings’ frames will need to
be transformed back into the inertial frame, due to the lack
of a body-fixed frame at the central body point mass. Ad-
ditionally, the method chosen requires the calculation of the
reaction forces between the wings and the hinges.

The main advantage to the method of deriving the equa-
tions of motion chosen in [9] is that it reduces the non-
linearities of the system. There is still rotational motion of
the wing, so the nonlinearities associated with Euler’s Equa-
tions of Motion are still present in the equations of motion.
However, the coupling between p, q, and r is non-existent
and there is no need to track the Euler Angles of the cen-
tral body. Furthermore, as undertaken in the paper, the 3-2-1
Euler Angles tracking the orientation of each wing can be di-
rectly used as the time rate of change of the pitch, plunge
and sweep angles. The dynamics model does not require ad-
ditional variables to track and transform the motions of the
wing into an inertial frame.

In reference [10], Buler, et al., derive the nonlinear equa-
tions of motion using the Gibbs-Appel Equations by using ten
generalized coordinates, q, and ten quasi-velocities, w, listed
below:

q = [x, y, z,Φ,Θ,Ψ, βL, βR, θL, θR]

w = [U, V, W, P, Q, R, β̇L, β̇R, θ̇L, ˙θR].

The above equations use standard aircraft notation, except in



the case of β (used to denote the flapping angle - motion about
the longitudinal axis of the central body) and θ (used to de-
note the angle of attack of the wings). Buler, et al., limit the
flapping kinematics of their model and do not account, or al-
low for, forward and back (lagging) translation of the wings.
Strictly speaking, their model restricts the stroke-plane of the
wing beat to a single plane. The model results in a ten de-
gree of freedom, 2nd-order system (or, alternatively, a twenty
degree of freedom, 1st-order system). The method of deriv-
ing the equations of motion results in the preservation of the
numerous, inherent non-linearities present in a flapping wing
micro-air vehicle.

The second half of the paper, after outlining the deriva-
tion of the equations of model and the aerodynamic model,
presents an outline of Linear Control Theory. The authors
continue with an analysis of the control of the linearized sys-
tem previously derived, but do not provide an analytical so-
lution for the linearization. A desired trajectory is assumed
and a linearization, and associated Jacobian matrix, is numer-
ically calculated based on the said trajectory. The paper pro-
vides coverage of the various control methods at the authors’
disposal and their respective shortcomings. The authors use
a linear quadratic regulator problem to determine a nominal
control input for the flapping wings of the vehicle. In the end,
the authors produce simulations of the dynamics of a flapping
vehicle/animal, based on the solution of a Newton-Raphson
solver to produce the necessary control input vector for the
desired output vector.

In reference [11], Bolender derives the nonlinear equa-
tions of motion for a flapping wing MAV utilizing Kane’s
Equations. The main difference from the derivation in refer-
ence [11], from other models, is the modeling of the central
body as two separate rigid bodies. The central body has a
main body, B, and a tail section, T . The tail section is lim-
ited to one degree of freedom about the hinge point between
body B and body T . The tail section is used for pitch control
of the flapping wing MAV. Bolender treats the wings in two
separate manners. One treatment ignores the combined mass
of the wing. The other treatment accounts for the mass of the
wing in the dynamics of the central body. However, in either
case, the wings are not treated as having separate degrees of
freedom and are considered to be holonomically constrained
to the central body. The wings’ motion is treated as a pre-
scribed motion. The motion of the wings is a function of time
and a control input.

4 DERIVATION OF THE NONLINEAR EQUATIONS OF
MOTION

4.1 D’Alembert’s Principle for Multiple Rigid Bodies
The method chosen to derive the equations of motion is

D’Alembert’s Principle Extended to Multiple Rigid Bodies.
A detailed description of the method can be found in [12, 13].
The chosen method is also briefly covered in [4]. The Gibbs-
Appell Equations, presented in [10], and Kane’s Equations,

presented in [11], are both extensions of D’Alembert’s Prin-
ciple [4] and have their own strengths and weaknesses [11].
The statement of D’Alembert’s Principle, in [12], is

n∑

i=1

[mi( ˙̄vi+¨̄ρci)·γ̄ij+(Ii· ˙̄ωi+ω̄i×Ii·ω̄i+miρ̄ci× ˙̄vi)·β̄ij] = Qj ,

(1)
where i is the number of rigid bodies and j is the number of
generalized coordinates. The flapping wing vehicle is mod-
eled as a system of three rigid bodies (n = 3): a central
fuselage with two rigid wings attached at ideal hinges. The
wings and central body are modeled as rigid airframes. A
body-fixed frame, frame B, is attached to the central body
at its center of mass; the frame is aligned with the b̄x vector
through the nose of the micro-air vehicle, b̄y is perpendicular
to b̄x and pointed out of the right side of the central body, and
b̄z pointed downward out of of the bottom of the micro-air
vehicle. The body-fixed frame is the same as for fixed-wing
aircraft and is presented in Figure 1.

Figure 1: Vehicle Model

The vectors R̄ and L̄ denote position vectors from the
central body center of mass to the hinge/attachment points of
the wings. At the hinge points, two central body-fixed frames
are attached, with directions parallel to the central body B
frame. The HR frame is fixed with origin at the right wing
hinge point. The HL frame is fixed with origin at the left wing
hinge point. Since the central body is modeled as a rigid body,
the magnitude and components of R̄ and L̄ are constant. We
define the individual components of R̄ and L̄ as

R̄ =
[

Rx Ry Rz

]
(2)

and
L̄ =

[
Lx Ly Lz

]
. (3)

The vectors ρ̄c2 and ρ̄c3 denote the vectors from the hinge
points on the central body to the respective centers of mass for
each wing (ρ̄c2 for the right wing and ρ̄c3 for the left wing).
The magnitude of the ρ̄ci vectors is constant, based on the as-
sumption of rigid bodies and rigidly attached wings. A wing-
fixed frame is attached to each wing at the hinge point. The



origin of the winged fixed frames is the hinge point and when
the wings at are their respective initial positions, the axes of
the wing-fixed frames, WR and WL, are parallel with the cen-
tral body-fixed frame B, and are identical to the hinge frames,
HR and HL. The frames WR and WL and the vectors R̄, L̄,
ρ̄c2, and ρ̄c3 are presented in Figure 2.

Figure 2: Wing Frames

The motion of the center of mass of the wings is tracked
similar to a mass moving in spherical coordinates, with a con-
stant radius, fixed at the origin of the system. In this case, the
origin of the respective motion is the hinge point, which is co-
incident with the origin of the WR, HR, HL and WL frames.
The constant radius is the magnitude of the vectors, ρ̄c2 and
ρ̄c3. The center of mass of the wing is assumed to be along
the y-axis of the hinge frames when the wing angles are iden-
tically zero. The position of the centers of mass of each wing
are expressed by the following vectors:

ρ̄c2 = ρc2[cosδRsinζRb̄x + cosδRcosζRb̄y + sinδRb̄z] (4)

ρ̄c3 = ρc3[cosδLsinζLb̄x − cosδLcosζLb̄y + sinδLb̄z]. (5)

Developing equations of motion using D’Alembert’s
Principle for Rigid Bodies requires the selection of reference
points for each rigid body. The reference point for the cen-
tral body, rigid body 1, is it’s respective center of mass. The
reference points for the right and left wing are chosen to be
the hinge attachment points, located on the central body. The
vectors tracking the center of mass of the wings in the hinged-
fixed frames are the vectors ρ̄c2 and ρ̄c3. The required ac-
celeration vectors of ¨̄ρc2 and ¨̄ρc3 are derived using diligent
application of the chain rule.

There are three main advantages to selecting
D’Alembert’s Principle. First, by taking the hinge points as
reference points, the requirement to calculate the reaction
forces between the wings and the central body is eliminated.
Second, the mass moments of inertia of the wings need to
be initially calculated about the reference points. The mass
moments of inertia will remain constant in the wing-fixed
frames and do not need to be translated into the B frame [12].
Third, by choosing reference points on the central body, the
absolute velocity of the wings does not need to be tracked.

In order to successfully develop the equations of motion, the
generalized coordinates and quasi-velocities need to be spec-
ified. In this formulation, the twelve generalized coordinates
are chosen to be the following: X , Y , Z (inertial position of
central body), ψ, θ, φ (3-2-1 Euler Angles of central body),
δR, αR, ζR, δL, αL, ζL. The twelve quasi-velocities are the
following: u, v, w, p, q, r, ˙δR, α̇R, ˙ζR, ˙δL, α̇L, and ˙ζL. To
summarize, the generalized coordinates, q, are

qj = [X, Y, Z,ψ, θ,φ, δR, αR, ζR, δL, αL, ζL] (6)

and the quasi-velocites, uj , are

uj = [u, v, w, p, q, r, δ̇R, α̇R, ζ̇R, δ̇L, α̇L, ζ̇L]. (7)

The importance of flapping and lagging angles, and the asso-
ciated degrees of freedom, is important when biological fly-
ers transition from hovering to forward flight [2]. Figures 3,
4, and 5 show the vehicle model from different view points
and the relationship of the wing frames, WR and WL, and the
central body frame B. The left side of the vehicle, and αL,
is not depicted, but is simply the mirror image of Figure 4.
Dashed lines represent a negative direction in the respective
reference frame. The flapping angles, δR and δL, are posi-
tive in a downward motion (positive b̄z). The lagging angles,
ζR and ζL are positive in a forward flapping motion (positive
b̄x). The hinge frames, HR and HL, are not depicted, but are
parallel to the B frame.

Figure 3: Front View - δR and δL

4.2 Velocity and Angular Velocity Coefficients
The first step in the derivation is to determine the velocity

coefficients, γ̄ij = ∂v̄i
∂uj

, and the angular velocity coefficients,
β̄ij = ∂ω̄i

∂uj
, where i denotes the rigid body and j denotes the

generalized speeds. The translational and rotational velocities
of each of the rigid bodies are

v̄1 = ub̄x + vb̄y + wb̄z

v̄2 = v̄1 + ω̄1 × R̄
v̄3 = v̄1 + ω̄1 × L̄

(8)



Figure 4: Right Side View - αR

Figure 5: Top View - ζR and ζL

and

ω̄1 = pb̄x + qb̄y + rb̄z

ω̄2 = (p + δ̇R)b̄x + (q + α̇R)b̄y + (r − ζ̇R)b̄z

ω̄3 = (p− δ̇L)b̄x + (q + α̇L)b̄y + (r + ζ̇L)b̄z

. (9)

The velocity and angular velocity coefficients are ob-
tained by taking the partial derivatives of v̄i and ω̄i with re-
spect to the generalized speeds. The velocity coefficients,
γ̄1j , and the angular velocity coefficients, β̄1j for generalized
speeds j = 1 . . . 6 of the central body are

γ̄1j =
[

b̄x b̄y b̄z 0 0 0
]

(10)

and
β̄1j =

[
0 0 0 b̄x b̄y b̄z

]
. (11)

The velocity and angular velocity coefficients of the cen-
tral body for coordinates j = 7 . . . 12 are identically zero. The
velocity coefficients for the right wing, γ̄2j , and the left wing,
γ̄3j , for j = 1 . . . 6 are

γ̄2j = [b̄x b̄y b̄z . . .

−Rz b̄y + Ry b̄z Rz b̄x −Rxb̄z −Ry b̄x + Rxb̄y] (12)

γ3j = [b̄x b̄y b̄z . . .

−Lz b̄y + Ly b̄z Lz b̄x − Lxb̄z − Ly b̄x + Lxb̄y]. (13)

The velocity coefficients for the left and right wing, for
j = 7 . . . 12 are identically zero. The angular velocity co-
efficients of the right and left wings, β̄2j and β̄3j , respec-
tively, are identically zero for j = 1 . . . 3. For the right wing,
β̄2j is identically zero for j = 10 . . . 12. For the left wing,
β̄3j is identically zero for j = 7 . . . 9. For quasi-velocities
j = 4 . . . 6, the angular velocity coefficients are

β̄2j =
[

b̄x b̄y b̄z

]
(14)

β̄3j =
[

b̄x b̄y b̄z

]
. (15)

For the right wing, with respect to coordinates j = 7 . . . 9,
the angular velocity coefficients are

β̄2j =
[

b̄x b̄y −b̄z

]
. (16)

In regards to the left wing, the angular velocity coefficients
for j = 10 . . . 12 are

β̄3j =
[
−b̄x b̄y b̄z

]
. (17)

The accelerations of the three rigid bodies are obtained by
differentiating the translational and rotational velocities and
making proper use of the transport theorem [4]. For exam-
ple, the acceleration of the right wing, ˙̄v2 in the central body
frame, is

˙̄v2 = ˙̄v1 + ˙̄ω1 × R̄ + ω̄1 × v̄1 + ω̄1 × (ω̄1 × R̄). (18)

4.3 Inertia Tensors
For the central body, an x− z plane of mass symmetry is

assumed. No planes of mass symmetry are assumed for either
wing during the model development. As a result, the resulting
mass moments of inertia matrices for each rigid body are the
following:

I1 =




Ixx,1 0 −Ixz,1

0 Iyy,1 0
−Ixz,1 0 Izz,1



 (19)

I2 =




Ixx,2 −Ixy,2 −Ixz,2

−Ixy,2 Iyy,2 −Iyz,2

−Ixz,2 −Iyz,2 Izz,2



 (20)

I3 =




Ixx,3 −Ixy,3 −Ixz,3

−Ixy,3 Iyy,3 −Iyz,3

−Ixz,3 −Iyz,3 Izz,3



 . (21)

4.4 Rotation Matrices
Although it is not necessary to continuously calculate the

mass moments of inertia for the wings in the B frame, it may
be necessary in the use of the model to rotate aerodynamic
forces generated by the flapping of the wings from the WR

and WL frames into the B frame. RR is the rotation matrix



of the WR frame into the HR frame. Treating the angles de-
scribing the orientation of the right wing, ζR, αR, and δR, as
3-2-1 Euler Angles results in the calculation of RR.

RζR =




cosζR sinζR 0
−sinζR cosζR 0

0 0 1





RαR =




cosαR 0 −sinαR

0 1 0
sinαR 0 cosαR





RδR =




1 0 0
0 cosδR sinδR

0 −sinδR cosδR





RR = RδRRαRRζR . (22)

A similar procedure can be utilized to obtain the rota-
tion of aerodynamic forces and moments generated by the
left wing into the B frame. The rotation matrix for the left
wing is

RL = RδLRαLRζL . (23)

The rotation matrix RαL has the same structure as it’s coun-
terpart on the right wing, RαR . The rotation matrices RζL

and RδL are different and are defined as

RζL =




cos(π − ζL) sin(π − ζL) 0
−sin(π − ζL) cos(π − ζL) 0

0 0 1



 (24)

RδL =




1 0 0
0 cos(π + δL) sin(π + δL)
0 −sin(π + δL) cos(π + δL)



 . (25)

By using the trigonometric rules for sine and cosine, the
rotation matrices RζL and RδL simplify to

RζL =




−cosζL −sinζL 0
sinζL −cosζL 0

0 0 1



 (26)

and

RδL =




1 0 0
0 −cosδL −sinδL

0 sinδL −cosδL



 . (27)

4.5 Force Description
The aerodynamics forces and moments produced by the

wings are assumed to act over the three bodies as a whole.
The aerodynamic forces,Faero, are defined as

Faero = Fxb̄x + Fy b̄y + Fz b̄z. (28)

The aerodynamic moments, Maero, are defined as

Maero = Lb̄x + Mb̄y + Nb̄z. (29)

The generalized forces, Qi, are determined using the prin-
ciple of virtual work. Constraint forces do not perform virtual
work, therefore they are not considered in the formulations.
The generalized forces affecting the translation of the central
body are



Q1

Q2

Q3



 =




Fx

Fy

Fz



 + (m1 + m2 + m3)RB




0
0
g



 . (30)

The generalized forces/moments affecting the rotation of
the central body are




Q4

Q5

Q6



 =




L
M
N



 + (R̄ + ρ̄c2)× (m2)RB




0
0
g



+

. . . + (L̄ + ρ̄c3)× (m3)RB




0
0
g



 . (31)

The generalized forces Q7, Q8, and Q9 are the control mo-
ments for the right wing, Q10, Q11, Q12 are the control mo-
ments for the left wing. Q8 and Q11 control the angle of
attack of the wings, right and left wing respectively. Q7 and
Q10 control the flapping motion of the wings, while Q9 and
Q12 control the lagging angle of the wings.
4.6 Final Equations of Motion

The derived equations of motion, with all of the individual
pieces put together, are presented in vector/matrix notation.
The first three equations describe the translational velocity of
the central body.

m1 ˙̄v1 + m2( ˙̄v2 + ¨̄ρc2) + m3( ˙̄v3 + ¨̄ρc3) =




Q1

Q2

Q3



 . (32)

Due to the continuous flapping of the wings, the rotational
dynamics of the central body are the most complex.

I1 ˙̄ω1+ω̄1×I1ω̄1+m2R̄×( ˙̄v2+¨̄ρc2)+m3L̄×( ˙̄v3+¨̄ρc3)+...

I2 ˙̄ω2 + ω̄2 × I2′ω̄2 + m2ρ̄c2 × ˙̄v2 + ...

I3 ˙̄ω3 + ω̄3 × I3ω̄3 + m3ρ̄c3 × ˙̄v3 =




Q4

Q5

Q6



 . (33)

The rotations of the right wing and and the left wing are de-
scribed by Equation 34 and Equation 35, respectively.

I2 ˙̄ω2 + ω̄2 × I2ω̄2 + m2ρ̄c2 × ˙̄v2 =




Q7

Q8

Q9



 (34)

I3 ˙̄ω3 + ω̄3 × I3ω̄3 + m3ρ̄c3 × ˙̄v3 =




Q10

Q11

Q12



 . (35)



5 SIMULATIONS AND RESULTS

5.1 Model
Through the derivations of the equations of motion, we

determined simplications could be made to the model in or-
der to reduce the coupling of the rotations of the wings with
the translational and rotational motion of the central body .
One of the simplications is to place the hinge points co-linear
with the y-axis of the central body. With the hinge points
along the y-axis, the x and z components of the R̄ and L̄
vectors are identically zero.

5.2 Aerodynamic Data
The aerodynamic data is obtained by surrogate modeling

of two dimensional flow [5]. The model of the wings used to
obtained the time-averaged aerodynamics data is a flat plate,
with a prescribed chord length, c, and a span of 2c(for each
wing). The plate has a thickness of 2%. To model the mass
moments of inertia of the wings, all cross products of inertia
are assumed to be zero in the wing frame (when the δ and ζ
angles are identically zero). The resulting inertia tensor for
the right wing, with zero flapping motion, at the center of
mass of the wing in the wing-fixed frame, is

I2 =




1
12m2b2 0 0

0 1
12m2c2 0

0 0 1
12m2(b2 + c2)



 , (36)

where b is the span of the wing and c is the chord length.
The aerodynamic data [2, 5] prescribes the plunging am-

plitude as
ζR(t) = hasin(2πft)
ζL(t) = hasin(2πft) . (37)

As previously stated, the wings motion is defined as positive
when the lagging motion is in the positive x direction in the
body frame. The angle of attack (or rotation of the wing) is
described as

α(t) = αo − αasin(2πft + φα). (38)

The phase lag between the translation and rotation of the wing
is denoted by φα. In Equation 38, αo is the initial angle of
attack at the start of the flapping motion and αa is the time-
average angle of attack. For the aerodynamic model, the pa-
rameters ha, αa, and φα are variable. For a given Reynolds
number, the frequency of the flapping can be calculated based
on the relationship, from reference [5, 2]

Rehovering =
(2πfha)c

ν
. (39)

The current aerodynamic data is only for a normal hovering
mode, the wing translation is purely horizontal with the re-
spect to the B frame [2]. In the normal hovering mode, the
flapping angle (δR, δL) is identically zero for all time, t.

The control moments for each wing are calculated based
on the required accelerations, based on the flapping kinemat-
ics, and the inertia tensor in the B frame. They are related by
the relationship




Q7

Q8

Q9



 = I2′ᾱwing + ω̄2 × I2
′ω̄2 (40)

where

ᾱwing =




0

αa(2πf)2sin(2πft + φα)
−ha(2πf)2sin(2πft)



 . (41)

SImilarly, the control moments for the left wing are



Q10

Q11

Q12



 = I3′ᾱwing + ω̄3 × I3
′ω̄3. (42)

5.3 Model Parameters
The initial simulations are conducted based off of the cur-

rent aerodynamic data and do not specifically replicate, or
model, any living organism. Based on the aerodynamic data
available in [5], a given set of wing kinematics is chosen. For
the purpose of the simulations, Case 11 from [5] is used. The
CL is 0.46 from Case 11 and the plunging amplitude is related
to the chord length by the ratio [5]

2ha

c
= 4.0. (43)

The chosen phase angle,φα, is 90 degrees and the average
angle of attack, αa, is 62.5 degrees φα and αa. The Reynolds
number for Case 11 is 100. The chord length is calculated
by choosing a frequency and utilizing Equation 39. Choos-
ing a frequency of 30 Hz, with a Reynolds number of 100,
results in a chord length, c, of 2 mm. The simulations are
intended to model a normal hovering mode. Based on the this
assumption, the time-averaged aerodynamic moments are as-
sumed to be identically zero. Additionally, the time-averaged
coefficient of drag, CD, is also zero, based on [5]. The lift
forces are assumed to counteract the gravity forces acting on
the central body.
5.4 Results

Figures 6 and 7 shows the position of the center of mass of
the MAV in the B frame. The simulations of the model pro-
duce symmetrical flapping. With flapping motion that con-
sists only of lagging and pitching motions, the center of mass
of the system symmetrically fore and aft in the B frame. The
shift of the center of mass is small. It is on the order of 10−7,
which is approximately four orders of magnitude smaller than
the vehicle scale.

The Euler angles of the central body are presented in Fig-
ures 8, 9 and 10. The results show that the central body



pitches up and down about the b̄y axis with each wing beat.
As the wings go forward, the nose pitches down. The hover
is unstable, as the angular velocity of the MAV continues to
increase. The bank angle, φ, and yaw angle, ψ, are effec-
tively zero. The values produced by the simulation are on the
order of 10−17 and the error from zero is attributed to sim-
ulation error. The pitch angle change is approximately 0.01
radians per flapping cycle. The small effects on the body of
each wingbeat, coupled with unstable hover, are consistent
with the results in Reference [14].

!! !" !# $ # " !

%&#$
!'

!#

!$()

!$(*

!$(+

!$("

$

$("

$(+

$(*

$()

#

%,-.

/,
-
.

Figure 6: MAV Center of Mass in B Frame - x v. z
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Figure 7: MAV Center of Mass in B Frame - y v. x
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Figure 8: Yaw angle, ψ, of central body
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Figure 9: Pitch angle, θ, of central body

! " #! #" $! $" %!
!!&"

!

!&"

#

#&"

$

$&"

%
'(#!

!#)

*+,

!(
-.
/0
1/
23
4

Figure 10: Roll angle, φ, of central body

6 CONCLUSION AND FUTURE WORK

The paper presented the derivation of the nonlinear, mul-
tiple body equations of motion for a flapping wing micro air
vehicle using D’Alembert’s Principle for Multiple Rigid Bod-
ies. The equations were derived using 12 generalized coordi-
nates and 12 quasi-velocities. Simulations were conducted
using time-averaged data for the aerodynamic forces and mo-
ments. Future Work will investigate the difference in perfor-
mance and simulation results between time-averaged data and
instantaneous lift and drag data. Previous work has shown in
[3, 15] that flexible wings produce more thrust. Humming-
birds control part of their flapping motion [16] by changing
the chord length, along the span of the wing, during flapping.
Simulations will be conducted with varying positions of the
hinge points, the conjecture is that stability may be improved
by ensuring that the time-variant system center of mass is for-
ward of the time-variant aerodynamic center. Investigation
of nonlinear and linear control schemes will be conducted.
Based on the work presented in [10], analytical equilibrium
solutions may not exist. Numerical solvers may be required
to obtain equilibrium solutions for desired maneuvers and tra-
jectories and to develop control schemes based on the numer-
ical solutions.
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