
Autonomous Flight in Unstructured and Unknown
Indoor Environments

Abraham Bachrach, Ruijie He, and Nicholas Roy∗

Massachusetts Institute of Technology, Cambridge, MA, USA

ABSTRACT

This paper presents our solution for enabling
a quadrotor helicopter, equipped with a laser
rangefinder sensor, to autonomously explore and
map unstructured and unknown indoor environ-
ments. While these capabilities are already com-
modities on ground vehicles, air vehicles seeking
the same performance face unique challenges. In
this paper, we describe the difficulties in achiev-
ing fully autonomous helicopter flight, highlight-
ing the differences between ground and heli-
copter robots that make it difficult to use algo-
rithms developed for ground robots. We then de-
scribe our solutions to the key problems, includ-
ing a multi-level sensing and control hierarchy, a
high-speed laser scan-matching algorithm, EKF
data fusion, and a high-level SLAM implementa-
tion. Finally, we show experimental results that
illustrate the helicopter’s ability to navigate ac-
curately and autonomously in unknown environ-
ments.

1 INTRODUCTION

Micro Aerial Vehicles (MAVs) are increasingly being
used in military and civilian domains, including surveillance
operations, weather observation, and disaster relief coordina-
tion. Enabled by GPS and MEMS inertial sensors, MAVs that
can fly in outdoor environments without human intervention
have been developed [1, 2, 3, 4].

Unfortunately, most indoor environments and many parts
of the urban canyon remain without access to external posi-
tioning systems such as GPS. Autonomous MAVs today are
thus limited in their ability to fly through these areas. Tra-
ditionally, unmanned vehicles operating in GPS-denied en-
vironments can rely on dead reckoning for localization, but
these measurements drift over time. Alternatively, simulta-
neous localization and mapping (SLAM) algorithms build a
map of the environment around the vehicle while simultane-
ously using it to estimate the vehicle’s position. Although
there have been significant advances in developing accu-
rate, drift-free SLAM algorithms in large-scale environments,
these algorithms have focused almost exclusively on ground
or underwater vehicles. In contrast, attempts to achieve the
same results with MAVs have not been as successful due to
a combination of limited payloads for sensing and computa-
tion, coupled with the fast, unstable dynamics of the air vehi-
cles.
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Figure 1: Our quadrotor helicopter. Sensing and computation
components include a Hokuyo Laser Rangefinder (1), laser-
deflecting mirrors for altitude (2), a monocular camera (3),
an IMU (4), a Gumstix processor (5), and the helicopter’s
internal processor (6)

Figure 2: Autonomous flight in unstructured indoor environ-
ments

In this work, we present our quadrotor helicopter system,
shown in Figure 1, that is capable of autonomous flight in
unstructured indoor environments, such as the one shown in
Figure 2. The system employs a multi-level sensor processing
hierarchy designed to meet the requirements for controlling a
helicopter. The key contributions of this paper are:

1. Development of a fully autonomous quadrotor that re-
lies only on onboard sensors for stable control without
requiring prior maps of the environment.

2. A high-speed laser scan-matching algorithm that al-
lows successive laser scans to be compared in real-time
to provide accurate velocity and relative position infor-
mation.

3. A modified 2D SLAM algorithm that handles the 3D
motion of the vehicle;

After discussing related work in Section 2, we begin in
Section 3 by analyzing the key challenges MAVs face when
attempting to perform SLAM. We then describe the algo-
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rithms employed in our system, highlighting the key en-
abling technologies that were developed to accomplish map-
ping with a MAV. Finally, we demonstrate our helicopter nav-
igating autonomously in 3 different unstructured indoor envi-
ronments.

2 RELATED WORK

In recent years, autonomous flying robots has been an
area of increasing research interest. Many capabilities have
been developed for autonomous operations in outdoor envi-
ronments, including high-speed flight through cluttered en-
vironments [2], helicopter acrobatics [3], autonomous land-
ing, terrain mapping [4], coordinated tracking and planning
of ground vehicles [1], etc. These systems typically take ad-
vantage of GPS measurements for state estimation, which are
not available indoors.

While some authors [5, 6] have demonstrated indoor
flight using GPS simulated from motion capture systems, we
seek to develop flying robots that are able to operate au-
tonomously while carrying all sensors used for localization,
control and navigation onboard. Other authors [7, 8] use a
small number of ultrasound sensors to perform altitude con-
trol and obstacle avoidance. Their helicopters are able to
take-off, land and hover autonomously; however, they do not
achieve goal-directed flight.

There have been numerous efforts to fly helicopters au-
tonomously indoors using monocular camera sensors. [9]
performed visual servoing over known Moire patterns to ex-
tract the full 6dof state of the vehicle for control, while [10]
detects lines in a hallway, and [11] tracked edges in office en-
vironments with known structure. While these authors have
demonstrated autonomous flight in limited indoor environ-
ments, their approaches have been constrained to environ-
ments with specific features, and thus may not work as well
for general navigation in GPS-denied environments. [12] ex-
tracted corner features that are fed into an EKF-based Vision-
SLAM framework, building a low-resolution 3D map suffi-
cient for localization and planning. However, an external mo-
tion capture system was used to simulate inertial sensor read-
ings.

This paper builds on our previous work in [13], where we
present a planning algorithm for a laser-equipped quadrotor
helicopter that is able to navigate autonomously indoors with
a given map. Here, we extend the work by developing a sys-
tem that is able to navigate, localize, build maps and explore
autonomouslywithouta prior map.

Recently, [14, 15] designed helicopter configurations that
were similar to the one presented in [13]. [14] scan-matched
successive laser scans to hover their quadrotor helicopter,
while [15] used particle filter methods to globally localize
their helicopter with a precomputed map that was generated
by a ground-based robot. However, none of these papers have
presented experimental results demonstrating the abilityto
stabilize all 6dof of the helicopter autonomously using the
onboard sensors.

3 MAV-SPECIFIC CHALLENGES

In the ground robotics domain, combining wheel odom-
etry with sensors such as laser rangefinders, sonars, or cam-
eras in a probabilistic SLAM framework has proven very suc-

cessful [16]. Many algorithms exist that accurately localize
ground robots in large-scale environments. Unfortunately,
mounting equivalent sensors onto a helicopter and using ex-
isting SLAM algorithms does not result in the same success.
The requirements and assumptions that can be made with fly-
ing robots are sufficiently different from those that can be
made with ground robots that they must be managed differ-
ently.

3.1 Payload
MAVs have a maximum amount of vertical thrust that

they can generate to remain airborne, which severely limits
the amount of payload available for sensing and computation
compared to similar sized ground vehicles. This weight lim-
itation eliminates popular sensors such as SICK laser scan-
ners, large-aperture cameras and high-fidelity IMUs. Instead,
indoor air robots rely on lightweight Hokuyo laser scanners,
micro cameras and/or lower-quality MEMS-based IMUs, all
of which have limited ranges and fields-of-view and are nois-
ier compared to their ground equivalents.

Unlike ground vehicles, air vehicles are unable to mea-
sure odometry directly; most SLAM algorithms need these
measurements to initialize the estimates of the vehicle’s mo-
tion between time steps. Although one can obtain relative po-
sition estimates by double-integrating acceleration measure-
ments, lightweight MEMS-based IMUs are often subject to
biases that can cause the accelerations to drift very quickly,
as shown in Figure 3(a). We must therefore obtain rela-
tive position estimates measurements by using either visual
odometry [17] or laser scan-matching [18, 19] algorithms.

Finally, despite the advances within the community,
SLAM algorithms continue to be computationally demanding
even for powerful desktop computers, and are therefore not
implementable on today’s small embedded computer systems
that can be mounted onboard indoor MAVs. The computa-
tion can be offloaded to a powerful groundstation by trans-
mitting the sensor data wirelessly; however, communication
bandwidth then becomes a bottleneck that constrains sensor
options. Camera data must be compressed with lossy algo-
rithms before it can be transmitted over wifi links, which adds
noise and delay to the measurements. This noise particularly
affects feature detectors which look for high frequency infor-
mation such as corners in an image. Additionally, while the
delay can often be ignored for slow-moving, passively-stable
ground robots, helicopters have fast and unstable dynamics,
making control under large sensor delay conditions impossi-
ble.

3.2 Dynamics
The helicopter’s fast dynamics result in a host of sens-

ing, estimation, control and planning implications for theve-
hicle. Filtering techniques such as Kalman Filters are often
used to obtain better estimates of the true vehicle state from
noisy measurements. Smoothing the data generates a cleaner
signal, but adds delay to the state estimates. While delays
generally have insignificant effects on vehicles with slow dy-
namics, the effects are amplified by the MAV’s fast dynamics.
This problem is illustrated in Figure 3(b), where we compare
the normal hover accuracy to the accuracy when the state esti-
mates are delayed by.2s. While our vehicle is normally able
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Figure 3: (a) Ground truth velocities (blue) vs. integratedac-
celeration (red). (b) Comparison of the hover accuracy using
PD-control with no delay (blue), PD control with.2s of delay
(green).

to achieve an RMS error of6cm, with the delay, the error
increases to18cm.

In addition, as will be discussed in Section 4, the quadro-
tor is well-modeled as a simple2nd-order dynamic system
with no damping. The underdamped nature of the dynamics
model implies that simple proportional control techniquesare
insufficient to stabilize the vehicle, since any delay in thesys-
tem will result in unstable oscillations. This effect has been
observed experimentally. We must therefore add damping to
the system through the feedback controller, which empha-
sizes the importance of obtaining accurate and timely state
estimates for both position and velocity. Traditionally, most
SLAM algorithms for ground robots completely ignore the
velocity states.

Unlike ground vehicles, a MAV cannot simply stop and
perform more sensing when its state estimates contain large
uncertainties. Instead, the vehicle will probably be unable to
estimate its velocity accurately, and as a result, may pick up
speed or oscillate, degrading the sensor measurements fur-
ther. Therefore, planning algorithms for air vehicles mustnot
only be biased towards paths with smooth motions, but must
also explicitly reason about uncertainty in path planning,as
demonstrated in [13].

3.3 3D effects
Finally, MAVs operate in a truly 3D environment since

they can hover at different heights. The visible 2D slice of
a 3D environment can change drastically with height and at-
titude, as obstacles suddenly appear or disappear. However,
if we treat map changes resulting from changes in height and
attitude as sensor errors, allowing the map to be updated to
account for these changes, we will see that a 2D representa-
tion of the environment is surprisingly useful for MAV flight.

4 SYSTEM OVERVIEW

We addressed the problem of autonomous indoor flight as
primarily a software challenge, focusing on algorithms rather
than exotic hardware. To that end, we used off-the-shelf
hardware throughout the system. Our quadrotor helicopter,
shown in Figure 1, is the AscTec Hummingbird from Ascend-
ing Technologies GmBH1, and is able to carry roughly250g
of payload. We outfitted it with a Gumstix2 microcomputer,

1Ascending Technologies GmBH.http://www.asctec.de
2Gumstix Verdex.http://www.gumstix.com

which provides a Wi-Fi link between the vehicle and a ground
control station, and a lightweight Hokuyo3 laser rangefinder
for localization. The laser rangefinder provides a270◦ field-
of-view at40Hz, up to an effective range of30m. We deflect
some of the laser beams downwards to estimate height above
the ground plane.

The AscTec Hummingbird helicopter is equipped with at-
titude stabilization, using an onboard IMU and processor to
stabilize the helicopter’s pitch and roll [20]. This tames the
nastiest portions of the quadrotor’s extremely fast, nonlinear,
and unstable dynamics [6], allowing us to focus on stabiliz-
ing the remaining degrees of freedom in position and heading.
The onboard controller takes 4 inputs,u = [uφ, uψ, ut, uθ],
which denote the desired pitch and roll angles, overall thrust
and yaw velocities respectively. The onboard controller al-
lows the helicopter’s dynamics to be approximated with sim-
ple2nd-order linear equations:

ẍb = kφuφ + bφ z̈ = ktut + bt

ÿb = kψuψ + bψ θ̇ = kθuθ + bθ (1)

whereẍb andÿb are the resultant accelerations in body coor-
dinates, whilek∗ andb∗ are model parameters that are func-
tions of the underlying physical system. We learn these pa-
rameters by flying the helicopter inside a Vicon4 Motion cap-
ture system and fitting parameters to the data using a least-
squares optimization method. We also experimented with a
dynamics model that includes damping terms,

s̈ = k1u + k2ṡ + b (2)

However, when fitting this model to the data, we found that
k2 ≈ 0, confirming pilot experience that the system is un-
derdamped. Using the MatlabR© linear quadratic regulator
(LQR) toolbox, we then find feedback controller gains for
the dynamics model in Equation 1. Despite the model’s ap-
parent simplicity, our controller achieves a stable hover with
6cm RMS error.

To compute the high-precision, low-delay state estimates
needed for such hover performance, we designed the 3-level
sensing and control hierarchy, shown in Figure 4, distinguish-
ing processes based on the real-time requirements of their re-
spective outputs. This system was designed as a combina-
tion of asynchronous modules, building upon the CARMEN5

robot navigation toolkit’s software architecture. We describe
details of the individual modules next.

5 ENABLING TECHNOLOGIES

5.1 High-Speed Laser Scan-Matching Algorithm
As discussed in Section 3.1, we cannot directly measure

the MAV’s odometry; instead, we align consecutive scans
from the laser rangefinder to estimate the vehicle’s motion.
To do this, we developed a very fast and robust laser scan-
matching algorithm that builds a high-resolution local map
based on the past several scans, aligning incoming scans to
this map at the40Hz scan rate. This scan-matching algorithm

3Hokuyo UTM-30LX Laser.http://www.hokuyo-aut.jp
4Vicon Motion Capture Systems.http://www.vicon.com
5CARMEN.http://carmen.sourceforge.net
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Figure 4:Schematic of our hierarchical sensing, control and plan-
ning system. At the base level, the onboard IMU and controller
(green) create a tight feedback loop to stabilize the vehicle’s pitch
and roll. The yellow modules make up the real-time sensing and
control loop that stabilize the vehicle’s pose at the local level and
avoids obstacles. Finally, the red modules provide the high-level
mapping and planning functionalities.

is a modified version of the algorithm in [19], and is a key
component for closing the loop and performing SLAM on an
air vehicle. The algorithm first generates a local likelihood-
map from past scans, before finding the optimal rigid body
transform that maximizes the likelihood of the current scan.
While the scan matching algorithm described below is based
on the original implementation in [19], it required several
modifications to enable it to be used on the MAV. Specifi-
cally, our contributions are:

1. Using a drawing primitive, described in Section 5.1.1,
to generate the local map in real-time.

2. Using a different notion of a “local map,” adding scans
based on insufficient overlap rather than distance trav-
eled.

3. Using image addition primitives to accumulate the pose
likelihood map.

4. Adapting the search window based on the maximum
expected acceleration of the vehicle.

5. Developing a different method for obtaining a covari-
ance estimate, described in Section 5.1.3.

5.1.1 Local Map Generation

To find the best alignment for an incoming laser scan, one
needs a method for scoring candidate poses based on how
well they align to past scans. The first challenge in doing
this is that laser scanners provide individual point measure-
ments. Successive scans will generally not measure the same
points in the environment, which means that attempting to
correspond points directly can produce poor results. How-
ever, if we know theshapeof the environment, we can eas-
ily determine whether a point measurement is consistent with
that shape. We model the shape of the environment as a set of
polyline contours. Contours are extracted from the laser read-
ings by an algorithm that iteratively connects the endpoints
of candidate contours until no more endpoints satisfy the
joining constraints. The algorithm prioritizes joining nearby

contours, which allows it to handle partially transparent sur-
faces such as the railings in the environment depicted by Fig-
ure 5(a). Candidate contour merges are scored and stored in a
MinHeap data structure, which allows the best candidate to be
extracted efficiently. The overall contour extraction algorithm
processes a 350-point scan in 0.5ms on modern hardware.

(a) (b)

Figure 5: (a) Contours (blue lines) extracted from the raw
laser measurements alongside the raw laser readings (red
dots). (b) The resulting likelihood map generated from the
contours. Darker indicates higher likelihood.

Once we have the set of contours, we can evaluate the
likelihood of an alignment between scans. We assume that all
range measurements are taken independently, and we com-
pute the likelihood of an alignment as the product of likeli-
hoods for each individual point in the scan. We use a noise
model for the laser scanner that approximates the probability
of a single lidar point(x, y) as proportional to the distance,
d, to the nearest contourC, such thatP (x, y|C) ∝ e(−d/σ),
whereσ is a variance parameter that accounts for the sensor’s
noise characteristics. We then pre-compute a likelihood-map
where each cell represents the approximate log-likelihoodof
a laser reading occurring at a given location.

Accurately estimating thevelocityof the vehicle, where
small rounding errors in the position get magnified signifi-
cantly, requires a high resolution likelihood map that can be
difficult to create in real-time. However, if one examines a
likelihood map, such as the one shown in Figure 5(b), one
quickly realizes that for any reasonable value ofσ, the vast
majority of cells will be zero. So, while conventional meth-
ods compute the value of every cell in the map, and there-
fore require at leastO(n2) operations, wheren is the num-
ber of cells along an edge, we developed a likelihood map
generation algorithm that exploits the sparsity of the grid
map, resulting in a computational complexity ofO(m) where
m ≪ n2 is the number of nonzero cells.

We created a drawing primitive that explicitly draws the
nonzero likelihoods by sliding a kernel along the pixels of
the input line segment, applying amax operator between the
current map value and the kernel’s. Naively using a square
kernel, with values set based onP (x, y|C) above would re-
sult in cells being modified many times as the kernel slides
along the line; however, one can avoid this problem by using
a 1 pixel-wide horizontal or vertical kernel, depending on the
slope of the line. For lines that are not perfectly horizontal
or vertical, this kernel must be widened by1/cos(s), where
s is the slope of the line. Creating the likelihood map with



this primitive simply requires drawing all the line segments
in the extracted contours, which takes around20ms even for
extremely large7.5mm resolution likelihood maps.

We create the map from a set ofk previous scans, where
new scans are added when an incoming scan has insufficient
overlap with the current set scans. This creates a locally ac-
curate sliding window where the map contains the recent his-
tory around the vehicle, and ensures that all motions within
this map will be registered to it in a consistent manner. For
example, if the vehicle is hovering in one place, the map will
not change, and the position estimates will be drift-free.

5.1.2 Scan-to-Map Alignment

The second task is to find the best rigid body transform
(x, y, θ) for each incoming scan with respect to the precom-
puted likelihood map. Many scan-matching algorithms use
gradient descent techniques to optimize these values. How-
ever, since the 3D pose likelihood space is often very compli-
cated, even for fairly simple environments, gradient descent is
subject to local optima. We chose to use a very robust, if po-
tentially computationally inefficient, exhaustive searchover a
grid of possible poses. In addition to being extremely robust,
computing the likelihoods for the entire grid of poses allows
us to easily determine the uncertainty of our match.

While this exhaustive search might initially seem hope-
lessly inefficient, if implemented carefully, it can be done
very quickly. Much of the search time is incurred by trans-
forming the laser scan to the desired pose. However, if we
holdθ constant, for a given point, the set of likelihoods asso-
ciated with each translation is the square window surrounding
the point in the likelihood map. This means that the likeli-
hood for all translations can be computed from a single trans-
formation. These windows can be accumulated into the pose
likelihood map for an entire scan using the optimized image
addition functions available in the Intel Performance Primi-
tives,6 which provide a factor of2 speedup.

The optimized exhaustive search implementation makes
our method considerably faster than a naive implementation;
however we must still ensure that the search area is not too
large. Since we do not have wheel odometry with which
to initialize the scan matching, we assume that the vehicle
moves at a constant velocity between scans. The range of
poses that must be searched over can then be selected based
on the maximum expected acceleration of the vehicle, which
means that at high scan rates, the search volume is manage-
able.

In our implementation, we use a grid spacing of7.5mm
in x, y, and .15◦ in θ. At this resolution, it takes approx-
imately 5ms to search over the approximately15, 000 can-
didate poses in the search grid to find the best pose for an
incoming scan. Scans that need to be added to the likelihood
map are processed in a background thread, allowing pose esti-
mation to continue without impeding the real-time processing
path.

6Intel Performance Primitives.http://www.intel.com

5.1.3 Covariance Estimation

In addition to being very robust, computing the best align-
ment by exhaustive search has the advantage of making it
easy to obtain a good estimate of the covariance by exam-
ining the shape of the pose likelihood map around the global
optima. This estimate of the covariance is important when
we integrate the relative position estimates with other sensors
in the data fusion EKF, as described in Section 5.2. While
the entire pose likelihood map has many local maxima, it is
usually a fairly smooth bell shape in the immediate vicinityof
the global optima. If the environment surrounding the vehicle
has obstacles in all directions, such as in a corner, the align-
ment of scans will be highly constrained, resulting in a very
peaked likelihood map. On the other hand, if the environment
does not constrain the alignment, the map will be nearly flat
at the top.

While one could directly fit a multi-variate Gaussian to
the 3D pose likelihood map, for simplicity, we compute the
covariance in rotation separately from translation. For trans-
lation we look at the 2D slice of the pose likelihood map at the
optimal rotation. We then threshold this 2D map at the95th

percentile, and fit an ellipse to the resulting binary image.The
area and orientation of this ellipse is used as our estimate of
the measurement covariance. For the rotation portion, we find
the score of the best translation for each rotation, and recover
the width of the resulting bell shaped 1D curve.

5.2 EKF Data Fusion

The scan matcher outputs the estimated vehicle position
(x, y, θ), so to compute the full state estimate, including the
velocities, we use an EKF to fuse the scan matcher estimates
with the acceleration readings from the IMU. This has several
advantages over directly using the position estimates from
the scan matcher and their derivatives to control the vehicle.
Although the IMU readings drift significantly and are there-
fore not useful over extended time periods, they are useful
over short time periods, allowing us to improve our estimate
of the vehicle’s velocities. However, the wireless link and
scan matcher processing adds a variable delay to the mea-
surements, which can cause problems for controlling the ve-
hicle. In our EKF formulation, we perform the measurement
updates asynchronously, while the motion model prediction
step is performed on a fixed clock. This allows us to cleanly
interpolate the state estimates that are used in the feedback
controller.

Our filter is a standard EKF, implemented using the open
source KFilter library7. We use the filter to estimate the posi-
tions, velocities, and accelerations of the vehicle, alongwith
the biases in the IMU, resulting in a large state vector. Find-
ing good variance parameters by hand would be a very time-
consuming and error-prone task. Instead, we learn the vari-
ance parameters using the method described in [21]. By fly-
ing the helicopter with the state estimation process running in
a motion capture system, we obtain ground-truth values with
which to compare our state estimates. This allows us to run
stochastic gradient descent to find a good set of variance pa-
rameters. The parameter-learning algorithm results in EKF

7KFilter. http://kalman.sourceforge.net
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state estimation that provides significantly improved veloc-
ity estimates compared to the variance parameters chosen by
hand, as shown in Figure 6(b).

(a) (b)

Figure 6: (a) Comparison between the position estimated by
the onboard sensors (green) with ground truth measurements
(blue). (b) Comparison of the ground truth velocity (blue)
with the estimate from the EKF before (green) and after (red)
optimization.

Figures 6(a) and 6(b) demonstrate the quality of our EKF
state estimates. We compared the EKF state estimates with
ground-truth state estimates recorded by the motion capture
system, and found that the estimates originating from the
laser range scans match the ground-truth values closely in
both position and velocity. Throughout the1min flight, the
average distance between the two position estimates was less
that 1.5cm. The average velocity difference was0.02m/s,
with a standard deviation of0.025m/s. The vehicle was
not given any prior information of its environment (i.e., no
map). However, since all the walls in the room were con-
stantly within the laser’s field-of-view in this experiment, the
SLAM module was not needed to eliminate drift.

5.3 SLAM
We made use of the publicaly available implementation

of the GMapping [22] algorithm that is available in the
OpenSlam repository8, which performs slam in 2D. Despite
the fact that the helicopter operates in the full 3D environ-
ment, the algorithm works surprisingly well and serves as a
proof of concept for implementing SLAM on a MAV.

GMapping is an efficient Rao-Blackwellized particle fil-
ter which learns grid maps from laser range data. We chose
it due to its outstanding accuracy, real-time performance,and
its ability to handle changes to the 2D map that occur due
to changing height and attitude, as discussed in Section 3.3.
While the algorithm worked reasonably well out of the box,
we made modifications that improved its performance when
used in 3D environments on a MAV. The motion model for
the particles in the GMapping algorithm was based on a stan-
dard motion model for ground robots with wheel odometry.
However, since we use estimates computed by the laser scan
matching module, we modified GMapping’s motion model to
propagate the particles using the uncertainties computed by
the scan-matching module.

In addition to the motion model, we modified the map rep-
resentation so that the map gets updated rapidly in response
to changes in height. The algorithm computes the probability
that each grid cell is occupied or free based on the number of

8OpenSlam.http://openslam.org

times a laser beam reflects off, or passes through, the cell. If a
particular cell has been hit many times, the algorithm places a
very high confidence that the cell is occupied. However, if the
helicopter changes heights, and the cell becomes part of free
space, this confidence is no longer warranted. Unfortunately
the laser must pass through the cell at least as many times as
it was hit before the algorithm will be convinced that the cell
is actually now free, resulting in a very slow adaptation of the
map. Hence, we modified the map representation to cap the
maximum confidence for each grid cell, allowing it to change
from occluded to free (and vice-versa) more rapidly.

With these modifications, we are able to create large scale
maps of the environment such as those shown in Section 6.
The algorithm usually takes1 to 2 seconds to process in-
coming laser scans, allowing it to be run online, but is not
suitable to be directly incorporated into the real-time control
loop. Instead, the GMapping algorithm periodically sends po-
sition corrections to the data fusion EKF. Since the position
corrections are delayed significantly from when the measure-
ment upon which they were based was published, we must
account for this delay when we incorporate the correction.
This is done by retroactively modifying the appropriate po-
sition in the state history. All future state estimates are then
recomputed from this corrected position, resulting in globally
consistent state estimates. By incorporating the SLAM cor-
rections after the fact, we allow the state estimates to be pro-
cessed and published with low enough delay to control the
MAV, while still incorporating the information from SLAM
to ensure drift-free position estimates.

5.4 Planning and Exploration
Finally, to achieve full autonomy, we require a high-level

planner that enables the helicopter to either explore or move
towards a desired goal autonomously. While exploration has
been well-researched in ground robotics, differences between
air and ground vehicles, as discussed in Section 3.1, require
us to make different considerations when deciding where to
go next. In particular, the need to constantly provide control
signals to the helicopter means that while we seek to explore
the environment, we must ensure that the helicopter is able
to remain well-localized and estimate its velocity. We use
a modified definition of frontiers [23] to choose positions in
free space where the helicopter should fly to next such that
it explores previously unexplored regions in the environment.
We extend this concept by seeking to find a frontier pose that
maximizes both the amount of unexplored space that is ex-
pected to be explored and the ability of the helicopter to lo-
calize itself. The planner then uses the best frontier as itsgoal
and computes a path using dynamic programming.

6 EXPERIMENTS AND RESULTS

We integrated the suite of technologies described above
to perform autonomous navigation and exploration in un-
structured and unknown indoor environments. In this
section, we present results demonstrating that the sys-
tem is capable of fully autonomous operation in a va-
riety of indoor environments. To get a full picture of
our system in action, we suggest that the reader also
view the videos taken of these experiments available at:
http://groups.csail.mit.edu/rrg/videos.html.

http://openslam.org
http://groups.csail.mit.edu/rrg/videos.html


(a) Map of MIT Stata Center, 1st Floor.

(b) Map of MIT Stata Center, 3rd Floor. (c) Map of MIT Stata Center, basement.

Figure 7: (a) Map of the first floor of MIT’s Stata center constructed by the vehicle during autonomous flight. (b) Map of a
cluttered lab space with significant 3D structure. (c) Map ofconstrained office hallway generated under completely autonomous
exploration. Blue circles indicate goal waypoints clickedby human operator. Red line indicates path traveled based onthe
vehicle’s estimates.

6.1 Autonomous navigation in open lobbies

We flew the vehicle across the first floor of MIT’s Stata
Center. The vehicle was not given a prior map of the environ-
ment, and flew autonomously using only sensors onboard the
helicopter. In this experiment, the vehicle was guided by a
human operator clicking high-level goals in the map that was
being built in real-time, after which the planner planned the
best path to the goal. The vehicle was able to localize itself
and fly stably throughout the environment, and Figure 7(a)
shows the final map generated by the SLAM algorithm at the
end of the experiment. During the8min flight until the battery
was exhausted, the vehicle flew a distance of208.6m.

6.2 Autonomous navigation in cluttered environments

While unstructured, the lack of clutter along the walls in
the lobby environment allowed the 2D map assumption to
hold fairly well. We next tested our system by flying through
a cluttered lab space (Figure 2, insert of Figure 7(b)), operat-
ing close to the ground. At this height, chairs, desks, robots,
plants, and other objects in the area caused the 2D cross-
sectional scan obtained by the laser rangefinder to vary dra-
matically with changes in height, pitch, and roll. The resul-
tant SLAM map of the environment is shown in Figure 7(b).
The grey features littered within the otherwise free space de-
note the objects that clutter the environment and are occa-
sionally sensed by the laser rangefinder. Despite the cluttered
environment, our vehicle was able to localize itself and main-



tain a stable flight for6min over a distance of44.6m, a feat
that would not have been possible with a static map assump-
tion.

6.3 Autonomous exploration in office hallways
Finally, to demonstrate fully autonomous operation of the

vehicle, we closed the loop with our exploration algorithm,
as discussed in Section 5.4. The helicopter was tasked to ex-
plore the hallway environment shown in the insert of Figure
7(c). Once the helicopter took off and began exploring, we
had no human control over the helicopter’s actions as it au-
tonomously explored the unknown environment. The heli-
copter continuously searched for and generated paths to ar-
eas of new information. Figure 7(c) shows the map built
from 7min of autonomous flight, after traveling a distance of
75.8m.

7 CONCLUSION

In this work, we have developed a quadrotor helicopter
that is capable of fully autonomous exploration in unstruc-
tured and unknown indoor environments without a prior map,
relying solely on sensors onboard the vehicle. By reasoning
about the key differences between autonomous ground and air
vehicles, we have created a suite of algorithms that accounts
for the unique characteristics of air vehicles for estimation,
control and planning. Having developed a helicopter plat-
form that has many of the capabilities of autonomous ground
robots, we believe that there is great potential for future ex-
tensions of such platforms to operate in fully 3-dimensional
environments.
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